Chinese Journal of Tissue Engineering Research ›› 2019, Vol. 23 ›› Issue (11): 1641-1646.doi: 10.3969/j.issn.2095-4344.1060
Cheng Xiaoping1, Zheng Wenwei2, Ni Guoxin1
Received:
2018-08-07
Online:
2019-04-18
Published:
2019-04-18
Contact:
Ni Guoxin, Chief physician, Doctoral supervisor, First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, Fujian Province, China
About author:
Cheng Xiaoping, Master, Rehabilitation therapist, First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, Fujian Province, China
Supported by:
the National Natural Science Foundation of China, No. 81572219 (to NGX)
CLC Number:
Cheng Xiaoping1, Zheng Wenwei2, Ni Guoxin1. Study on mechanism of radix angelicae pubescentis in the treatment of osteoarthritis based on network pharmacology[J]. Chinese Journal of Tissue Engineering Research, 2019, 23(11): 1641-1646.
2.2 独活化学成分-靶点基因网络分析 独活中8个化学成分所对应的蛋白靶点共有52个,在Uniprot在线数据库查找出蛋白对应的基因名称,并在Cytoscape 3.6.1软件中对化学成分和作用靶点关系网络进行构建及分析。节点表示化合物或靶点基因,边表示节点之间的关系,节点的度数表示该节点拥有与其相互联系的其他节点数目,且当节点的度数越大,其越有可能是该网络图中“中枢节点”[12]。如图1所示,网络有60个节点(8个化学成分、52个靶点基因),93个边,从化学成分来看,度数≥5的有β-谷甾醇(度数=38)、紧接着是o-乙酰基哥伦比亚甙元(度数=16)、当归素(度数=12),欧前胡素(度数=8),当归醇D(度数=7),[(1R,2R)-2,3-二羟基-1-(7-甲氧基-2-氧代-6-基)-3-甲基丁基](Z)-2-甲基丁烯-2-烯酸酯(度数=6),紫花前胡苷(度数= 5),这体现了一药多靶及一靶多药的复杂网络关系,也进一步验证了独活通过多成分、多靶点、多途径的协同作用下发挥功效。"
[1] Yan M, Zhang J, Yang H, et al. The role of leptin in osteoarthritis. Medicine (Baltimore). 2018;97(14):e0257. [2] Wei Y, Zheng D, Guo X, et al. Transient Receptor Potential Channel, Vanilloid 5, Induces Chondrocyte Apoptosis in a Rat Osteoarthritis Model Through the Mediation of Ca2+ Influx. Cell Physiol Biochem. 2018;46(2):687-698. [3] Urban H, Little CB. The role of fat and inflammation in the pathogenesis and management of osteoarthritis. Rheumatology (Oxford). 2018;57(suppl_4):iv10-iv21. [4] Gao J, Ceglia SS, Jones MD, et al. A novel compact mass detection platform for the open access (OA) environment in drug discovery and early development. J Pharm Biomed Anal. 2016;122:1-8. [5] Bay-Jensen AC, Thudium CS, Gualillo O, et al. Biochemical marker discovery, testing and evaluation for facilitating OA drug discovery and development. Drug Discov Today. 2018; 23(2):349-358. [6] 周刚,马宝花.中药独活的研究进展[J].中国当代医药, 2012, 19(16): 15-16.[7] Tian S, Li Y, Wang J, et al. ADME evaluation in drug discovery. 9. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints. Mol Pharm. 2011;8(3):841-851. [8] Tian S, Wang J, Li Y, et al. Drug-likeness analysis of traditional Chinese medicines: prediction of drug-likeness using machine learning approaches. Mol Pharm. 2012;9(10): 2875-2886. [9] Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13. [10] 章亮,陈泽慧,陈韩英,等.基于网络药理学的白屈菜抗肿瘤分子机制研究[J].中草药,2018,49(3):646-657.[11] 孙雨辉,陆景坤,王健,等.基于网络药理学的三味檀香散治疗冠心病的机制初探[J].中国新药与临床杂志, 2018,37(5): 272-289.[12] 吴丹,高耀,向欢,等.基于网络药理学的柴胡抗抑郁作用机制研究[J].药学学报,2018,53(2):210-219.[13] 袁芳,何晓瑾,石俊,等.骨痹方治疗膝骨关节炎肾虚络痹证临床观察[J].中国实验方剂学杂志,2018,24(7):207-211.[14] 黄育生,袁贤琳,钟瑜,等.HPLC法测定羌活中紫花前胡苷的含量[J].中国民族民间医药,2013,22(10):14-15.[15] 张素清,李敏,虞立,等.半夏3种不同炮制品中β-谷甾醇含量的比较[J].中华中医药学刊,2018,36(1):42-44.[16] 李昌勤,彭琳娜,姚辰,等.加热处理对白芷中欧前胡素、异欧前胡素稳定性及酪氨酸酶活性的影响[J].中国中药杂志, 2016,41(5): 845-849.[17] 熊友谊,时维静,俞浩,等.紫花前胡苷抑制哮喘小鼠气道炎性反应和NF-κB信号传导通路[J].基础医学与临床, 2014,34(5): 690-694.[18] Visser AW, de Mutsert R, Bloem JL, et al. Do knee osteoarthritis and fat-free mass interact in their impact on health-related quality of life in men? Results from a population-based cohort. Arthritis Care Res (Hoboken). 2015;67(7):981-988. [19] Santangelo KS, Radakovich LB, Fouts J, et al. Pathophysiology of obesity on knee joint homeostasis: contributions of the infrapatellar fat pad. Horm Mol Biol Clin Investig. 2016;26(2):97-108. [20] 王飞,薛庆云.代谢综合征与骨关节炎发生、发展相关性的研究进展[J].中华骨科杂志,2016,36(4):248-256.[21] Xin L, Wu Z, Qu Q, et al. Comparative study of CTX-II, Zn2+, and Ca2+ from the urine for knee osteoarthritis patients and healthy individuals. Medicine (Baltimore). 2017;96(32):e7593. [22] Faour WH, Mancini A, He QW, et al. T-cell-derived interleukin-17 regulates the level and stability of cyclooxygenase-2 (COX-2) mRNA through restricted activation of the p38 mitogen-activated protein kinase cascade: role of distal sequences in the 3'-untranslated region of COX-2 mRNA. J Biol Chem. 2003;278(29):26897-26907[23] Yang D, Chen S, Gao C, et al. Chemically defined serum-free conditions for cartilage regeneration from human embryonic stem cells. Life Sci. 2016;164:9-14.[24] 史继德,冯海军,耿喜林,等.α-倒捻子素调节骨关节炎软骨细胞的增殖和凋亡[J].中成药,2018,40(1):8-13.[25] Zhao J, Li S, Trilok S, et al. Small molecule-directed specification of sclerotome-like chondroprogenitors and induction of a somitic chondrogenesis program from embryonic stem cells. Development. 2014;141(20): 3848-3858.[26] 苏宁,赵丹,杨丽,等.应用基因芯片技术检测SDS对人表皮细胞TNF信号通路基因差异表达的影响[J].生物技术通讯, 2016, 27(3): 386-390.[27] Li X, Wu D, Hu Z, et al. The Protective Effect of Ligustilide in Osteoarthritis: An in Vitro and in Vivo Study. Cell Physiol Biochem. 2018;48(6):2583-2595.[28] Barrachina L, Remacha AR, Romero A, et al. Assessment of effectiveness and safety of repeat administration of proinflammatory primed allogeneic mesenchymal stem cells in an equine model of chemically induced osteoarthritis. BMC Vet Res. 2018;14(1):241.[29] Wu Y, Wu T, Xu B, et al. Oxytocin prevents cartilage matrix destruction via regulating matrix metalloproteinases. Biochem Biophys Res Commun. 2017;486(3):601-606.[30] Kong D, Guan Q, Li G, et al. Expression of FSHR in chondrocytes and the effect of FSH on chondrocytes. Biochem Biophys Res Commun. 2018;495(1):587-593.[31] 王涛,殷红,廖江龙,等.骨关节炎与MAPK信号通路关系的研究概况[J].中国民族民间医药,2017,26(19):27-29.[32] 窦天旭,李旭.MAPK信号通路与骨关节炎[J].解剖科学进展, 2017,23(6):649-652.[33] Xu K, Ma C, Xu L, et al. Polygalacic acid inhibits MMPs expression and osteoarthritis via Wnt/β-catenin and MAPK signal pathways suppression. Int Immunopharmacol. 2018; 63:246-252.[34] Huang X, Xi Y, Pan Q, et al. Caffeic acid protects against IL-1β-induced inflammatory responses and cartilage degradation in articular chondrocytes. Biomed Pharmacother. 2018;107:433-439.[35] Zhao P, Cheng J, Geng J, et al. Curcumin protects rabbit articular chondrocytes against sodium nitroprusside-induced apoptosis in vitro. Eur J Pharmacol. 2018;828:146-153.[36] Ye D, Jian W, Feng J, et al. Role of long noncoding RNA ZFAS1 in proliferation, apoptosis and migration of chondrocytes in osteoarthritis. Biomed Pharmacother. 2018;104:825-831.[37] Qi X, Zhu L, Yang B, et al. Mitigation of cell apoptosis induced by ochratoxin A (OTA) is possibly through organic cation transport 2 (OCT2) knockout. Food Chem Toxicol. 2018; 121:15-23.[38] Seo SU, Min KJ, Woo SM, et al. Z-FL-COCHO, a cathepsin S inhibitor, enhances oxaliplatin-mediated apoptosis through the induction of endoplasmic reticulum stress. Exp Mol Med. 2018;50(8):107.[39] Nasser MW, Datta J, Nuovo G, et al. Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J Biol Chem. 2018;293(33):12945.[40] Huang Z, Zhou M, Wang Q, et al. Mechanical and hypoxia stress can cause chondrocytes apoptosis through over-activation of endoplasmic reticulum stress. Arch Oral Biol. 2017;84:125-132.[41] Gu Y, Chen J, Meng Z, et al. Diazoxide prevents H2O2-induced chondrocyte apoptosis and cartilage degeneration in a rat model of osteoarthritis by reducing endoplasmic reticulum stress. Biomed Pharmacother. 2017; 95:1886-1894.[42] Zhang Q, Lai S, Hou X, et al. Protective effects of PI3K/Akt signal pathway induced cell autophagy in rat knee joint cartilage injury. Am J Transl Res. 2018;10(3):762-770.[43] Yang Y, Wang Y, Zhao M, et al. Tormentic acid inhibits IL-1β-induced chondrocyte apoptosis by activating the PI3K/Akt signaling pathway. Mol Med Rep. 2018;17(3): 4753-4758.[44] Li L, Lv G, Wang B, et al. The role of lncRNA XIST/miR-211 axis in modulating the proliferation and apoptosis of osteoarthritis chondrocytes through CXCR4 and MAPK signaling. Biochem Biophys Res Commun. 2018;503(4): 2555-2562. |
[1] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[2] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
[3] | Xu Dongzi, Zhang Ting, Ouyang Zhaolian. The global competitive situation of cardiac tissue engineering based on patent analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 807-812. |
[4] | Wu Zijian, Hu Zhaoduan, Xie Youqiong, Wang Feng, Li Jia, Li Bocun, Cai Guowei, Peng Rui. Three-dimensional printing technology and bone tissue engineering research: literature metrology and visual analysis of research hotspots [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 564-569. |
[5] | Chang Wenliao, Zhao Jie, Sun Xiaoliang, Wang Kun, Wu Guofeng, Zhou Jian, Li Shuxiang, Sun Han. Material selection, theoretical design and biomimetic function of artificial periosteum [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 600-606. |
[6] | Liu Fei, Cui Yutao, Liu He. Advantages and problems of local antibiotic delivery system in the treatment of osteomyelitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 614-620. |
[7] | Li Xiaozhuang, Duan Hao, Wang Weizhou, Tang Zhihong, Wang Yanghao, He Fei. Application of bone tissue engineering materials in the treatment of bone defect diseases in vivo [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 626-631. |
[8] | Zhang Zhenkun, Li Zhe, Li Ya, Wang Yingying, Wang Yaping, Zhou Xinkui, Ma Shanshan, Guan Fangxia. Application of alginate based hydrogels/dressings in wound healing: sustained, dynamic and sequential release [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 638-643. |
[9] | Chen Jiana, Qiu Yanling, Nie Minhai, Liu Xuqian. Tissue engineering scaffolds in repairing oral and maxillofacial soft tissue defects [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 644-650. |
[10] | Xing Hao, Zhang Yonghong, Wang Dong. Advantages and disadvantages of repairing large-segment bone defect [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 426-430. |
[11] | Chen Siqi, Xian Debin, Xu Rongsheng, Qin Zhongjie, Zhang Lei, Xia Delin. Effects of bone marrow mesenchymal stem cells and human umbilical vein endothelial cells combined with hydroxyapatite-tricalcium phosphate scaffolds on early angiogenesis in skull defect repair in rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3458-3465. |
[12] | Wang Hao, Chen Mingxue, Li Junkang, Luo Xujiang, Peng Liqing, Li Huo, Huang Bo, Tian Guangzhao, Liu Shuyun, Sui Xiang, Huang Jingxiang, Guo Quanyi, Lu Xiaobo. Decellularized porcine skin matrix for tissue-engineered meniscus scaffold [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3473-3478. |
[13] | Mo Jianling, He Shaoru, Feng Bowen, Jian Minqiao, Zhang Xiaohui, Liu Caisheng, Liang Yijing, Liu Yumei, Chen Liang, Zhou Haiyu, Liu Yanhui. Forming prevascularized cell sheets and the expression of angiogenesis-related factors [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3479-3486. |
[14] | Liu Chang, Li Datong, Liu Yuan, Kong Lingbo, Guo Rui, Yang Lixue, Hao Dingjun, He Baorong. Poor efficacy after vertebral augmentation surgery of acute symptomatic thoracolumbar osteoporotic compression fracture: relationship with bone cement, bone mineral density, and adjacent fractures [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3510-3516. |
[15] | Liu Liyong, Zhou Lei. Research and development status and development trend of hydrogel in tissue engineering based on patent information [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3527-3533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||