Chinese Journal of Tissue Engineering Research ›› 2018, Vol. 22 ›› Issue (24): 3900-3906.doi: 10.3969/j.issn.2095-4344.0265
Previous Articles Next Articles
Liu Jiao-jiao, Zhu Xiao-lan, Liu Hui
Received:
2018-02-15
Contact:
Zhu Xiao-lan, Associate professor, Beijing Sport University, Beijing 100084, China
About author:
Liu Jiao-jiao, Master candidate, Beijing Sport University, Beijing 100084, China
CLC Number:
Liu Jiao-jiao, Zhu Xiao-lan, Liu Hui. Application of finite element method in biomechanical study on plantar fasciitis[J]. Chinese Journal of Tissue Engineering Research, 2018, 22(24): 3900-3906.
2.1 在足底筋膜炎损伤机制研究中的应用 利用有限元法能够实现对足底筋膜生物力学功能特点和损伤机制等的分析和评估。最初,Salathe等[29]于1986年建立了一个静态的不稳定结构来模拟足部结构,以5个跖骨的前端和跟骨块状体为支撑点,分析了足底筋膜的作用以及足部骨骼的变形及位移,为足底筋膜炎等损伤产生的力学机制研究提供了依据。陶凯等[30]通过建立足部的三维有限元模型,进行了双足平衡站立位状态下的静态模拟,研究发现足底筋膜和韧带系统对维持足部结构和功能、分散足部压力上起到了重要作用。吴立军等[31]进行的足部有限元分析指出足底筋膜后部是承受最大张拉应力的部位,其次是足底长韧带。这种高张力的刺激长期反复的施加于足底筋膜,当其达到超过筋膜生理限度的作用力时,将会诱发炎症过程,进而形成退变、纤维化、诱发足底筋膜炎[32]。Cheung等[33]的有限元模型研究也发现在平衡站立时,足底筋膜较高的张力体现在跟骨的内侧结节以及跖骨头处,该部位与足底筋膜痛点[34]相符合[34],综合相关实验研究对足底筋膜炎产生的风险因素的分析,进一步证实了长期高负荷张力刺激机制是诱发足底筋膜炎产生的重要原因。目前,利用有限元法研究造成足底筋膜承受较高张力的危险因素主要有以下两方面。 2.1.1 足部解剖学特点以及相关组织的病变 足部解剖学特点以及相关组织的病变是导致足底筋膜张力增加的因素。已有相关实验研究证明导致足底筋膜炎疼痛产生的原因与足弓的形状以及局部力的加载相关[7,14]。Sun等[35]利用有限元法研究发现不同的足弓结构会导致不同软组织的损伤,足底筋膜的应力应变在高足弓的情况下更高,并且随着足弓的增高前足的压力也随之增加(图1)。足部的承重和跟腱拉力增加也将引起足底腱膜受力的成倍增加,有限元模型分析指出,过长拉伸或者收紧跟腱都将导致足底腱膜拉力过大[36]。刘颖等[37]进行的足踝部有限元模型分析指出腓肠肌的挛缩是导致跟腱作用力增加的原因之一,并发现足部跟腱作用力大小对足底筋膜应力有显著影响,随着跟腱作用力的增加,足底筋膜的应力也随之增加。此外,足部非线性有限元研究发现足底主要韧带的损伤也将导致足底筋膜应力的异常上升[38]。 2.1.2 跖趾关节背屈 根据足底筋膜所处的解剖位置(图2),其如同弓弦般紧张于跟骨结节及跖骨头之间,长时间行走、跑步伴随着跖趾关节反复屈伸,将引起足底筋膜紧张,产生较高张力,从而导致足底筋膜炎。Chen等[39]基于足部运动学和动力学采集数据,利用所建立的足部有限元模型模拟分析了足底筋膜从站立中期到欲摆期的受力特征,发现整个过程中,欲摆期跖趾关节在背屈阶段足底筋膜的张力峰值是站立中期张力峰值的2.3倍,大小约为体质量的83.3%,并且张力均集中在跟骨内侧结节。Cheng等[40]以一个二维的有限元模型,设置了12组(3种角度下,有无负重、线性及非线性)状态,来模拟跖趾关节在欲摆期不同背屈角度下的足底筋膜的力学响应特点的分析,发现无论是在负重还是无负重条件下,进行线性分析还是非线性分析,随着背屈角度的增大足底筋膜都表现出较高的应力,负重条件下更高,且应力由跖骨向跟骨结节附近依次增大。同样的,Gefen等[41]结合足底压力测量以及数字X射线透视法,利用有限元法模拟了足部整个步态周期过程中的足部的力学响应特点发现,足底腱膜、跟腱以及跟骨附着点应力在足跟离地时显著升高,即应力峰值出现在蹬地阶段,并且该结果通过比较接触应力分布的模型预测,验证了应力状态的正确性。Lin等[42]则在上述研究的基础上进一步实现了以尸体标本实验数据和运动学实验数据为输入条件,对足部有限元模型进行的整个步态周期的模拟实验,研究指出峰值应力出现在步态周期的末端即前掌蹬地阶段,部位集中在跟骨近端足底筋膜附着处附近,与足底筋膜炎发展的位置密切相关,并由此推断相较于内测纵弓的塌陷,跖趾关节的背屈过程对足底筋膜应力峰值的影响更大。综合各项研究结果,跖趾关节背屈会使得足底筋膜承受的张力刺激机制在幅值和时间两个方面都增大,推测长时间过度背屈较易诱发足底筋膜炎。 2.2 在足底筋膜炎治疗方法研究中的应用 足底筋膜炎的缓解治疗可以从保守治疗以及手术治疗两个方面考 虑[21]。随着计算机建模功能越来越丰富和强大,有限元分析软件也在进行着不断更新和完善,有限元法在足底筋膜炎等足部疾病缓解治疗策略研究上的应用也越来越广泛[28]。 2.2.1 保守治疗 对足底筋膜进行适当的牵拉,有助于筋膜内部组织的再生,进而有助于缓解足底筋膜炎[40]。牵伸疗法作为保守治疗方法之一,分跟腱牵伸和足底筋膜牵伸,Cheng等[43]的有限元研究结果表明,随着跖趾关节背屈角度的增大,足底筋膜应力也随之增大;与此同时增加跟腱力,足底筋膜应力增加将更为明显,因此建议欲达到更好的牵伸效果可同时对足底筋膜和跟腱进行牵伸训练。Flanigan等[44]进行的足底筋膜的有限元分析发现,随着拇趾背屈和跟腱力的增加,足底筋膜的纵向张力增加,拇趾背屈比跟腱力对足底筋膜张力的影响更大,分别为66.14%和33.86%,由此指出直接牵伸足底筋膜比牵伸跟腱效果更佳。有限元研究还发现步行过程减少足跟的抬起也可降低筋膜受力,并可能进一步减少足底筋膜炎患者的疼痛[39]。足部有限元模型的研究发现增大足部肌肉的力量,能够明显降低作用在足底筋膜上的应力峰值,因此认为加强足部肌肉的力量训练可能有利于预防足底筋膜炎或缓解其症状[38]。 临床建议足底筋膜炎如果保守治疗6个月无效,可采用冲击波治疗[21]。Alkhamaali等[45]利用有限元模型模拟了足底筋膜炎的径向冲击波治疗,发现足底筋膜的负压达到1.5 MPa以上时,可能会导致足底软组织产生空化,并且由于足部应变能的累计,多脉冲击波会在足部产生累积效应;研究结果还指出,有效的冲击波治疗的区域是在病源附近,建议未来的模拟分析可以缩小冲击波作用在足部的范围来研究其对足底筋膜炎的治疗效果。 2.2.2 手术治疗 足底筋膜松解(切开)术是足底筋膜炎的主要手术治疗手段,有限元法的应用对该疗法提供了多方面的理论依据。临床上为了缓解足底腱膜炎引起的症状,经常采用松解足底腱膜的方法,Ren等[46]利包含胫腓骨、肌肉韧带、足底筋膜在内的更为完整的足踝三维有限元模型探讨了足底筋膜松解术的作用机制,并通过改变足底筋膜的弹性模量来间接模拟足底筋膜松解术的作用效果,结果显示随着筋膜弹性模量的降低,整个足部应力应变能随之增大,具体表现为足底内侧及外侧压力峰值增大,相反的是足跟区域应力峰值下降,由此推断足底筋膜松解术可以改变站立中期前后足力的传递,从而达到减少足跟处应力负荷来缓解足底筋膜炎引起的足跟处的疼痛。有限元研究还发现,虽然切断跖腱膜能够降低其在跟骨止点处的应力,缓解由于应力集中所致的足跟部疼痛,但会导致足弓稳定性降低及应力重新分布所致的足背外侧疼痛[28]。同时,完全切断跖腱膜使得后足弓明显变形,足底长韧带承受的张应力是正常状态下平均值的2倍多[47]。因此,临床治疗足底腱膜炎应首先考虑非手术疗法,如果必须进行足底腱膜松解,应考虑仅松解部分的足底腱膜以保持足部结构的完整性[48-49]。足部有限元模型模拟分析指出不同程度足底筋膜的松解会导致足部韧带应力的增大以及足部力学状态的改变[50]。Liang等[51]通过尸体标本研究及有限元分析发现,足底筋膜在支持足纵弓方面占据了矢状面足底韧带1/3的功能,并且可以起到限制足的外展及外翻的作用,当切断足底筋膜后会导致内侧纵弓塌陷及明显拉长,并伴随着前掌外展和足外翻。足底筋膜切开术的有限元模拟实验以及临床的经皮足底筋膜切开术提出足底筋膜松解在不大于40%-50% 时,能够较好的避免外侧足弓不稳定和跖骨及外侧韧带压力增加[52]。刘颖等[37]的研究则发现腓肠肌作用于足部的力对足底压力分布、足底压力峰值及足底筋膜应力有显著影响,由此认为腓肠肌松解手术也可对足底筋膜炎有缓解作用。此外,还有研究通过尸体标本实验以及有限元分析指出,当进行完前足截肢手术后足底筋膜的缝合术,将止于第四、五跖趾关节处的足底筋膜远端缝合于第三跖骨和骰骨上可以减缓足底筋膜的应力进而预防足底筋膜炎的产生[53]。 2.3 在鞋和鞋内垫设计中的应用 在研究足底筋膜炎常规治疗和缓解策略的同时,越来越多的研究将焦点放在鞋及内垫的设计上,有限元法也是此类研究的常用方法。 2.3.1 鞋类设计方面 最初,在利用限元法进行鞋类设计的研究中,Erdemir等[54]通过建立一个平面有限元模型,模拟了在鞋底中安置不同形状及材料类型的缓冲物对足底压力峰值的的影响,发现该设计能从一定程度上减少足底筋膜压力峰值,并发现依据足底压力分布情况确定缓冲物的位置比依据足部骨性标志更有效,并指出有限元法相比于之前的反复试错实验法在研究鞋类作为足部疾病干预方式上更具优势。Gefen等[41]利用逆向有限元分析方法,模拟计算了足底筋膜在步态周期过程中的生物力学响应情况,并设置了不同材料、厚度的鞋与足跟之间的接触应力关系,发现穿着摇杆底部的鞋子可能减少足底筋膜的负载。足底压力的增高是造成足底筋膜炎等足部疼痛的原因之一,Chen等[55]利用有限元建模法进行了改变鞋底厚度和跖骨垫位置以减少足底压力的研究,结果发现当鞋底非常厚时(该研究中设计的达到12.7 mm甚至更厚),在减少足底压力的效果上就会进入一个停滞期,但此时跖骨垫无论是安放于近侧还是远侧都会起到一个很好的减少足底压力的效果。Jeon等[56]以CT图像为数据源,建立了一个包含足部结构及鞋底的三维有限元模型来研究站立和行走时足底肌肉筋膜组织的应力变化,发现鞋的大底具有一定弯曲弧度相较于平底鞋而言,足底肌肉筋模的应力较小,且分布也较为均匀,由此建议足底筋膜炎及糖尿病患者可以通过优化鞋底形状来减轻和分散足底应力,防止症状的恶化。 鞋跟高度的升高会显著改变足部的生物力学响应,尤其是平衡站立以及行走时,会改变距腓前韧带(ATL)和足底筋膜的应力应变情况[57]。顾耀东等[58]利用有限元分析法以及Novel Pedar足底压力测试系统探究了被动提踵状态下第一跖纵弓在步态周期中的应力分布,发现穿着高跟鞋作为典型的被动提踵状态,足底筋膜应力值相较于平跟鞋状态增加1.5倍。但是,也有研究指出合适的鞋跟高度对治疗足底筋膜炎是有益的[59],并且在尸体标本实验研究中得以证实[60]。同样的,有限元模型分析中也得到了证实。Yu等[61]利用有限元模拟平衡站立期高跟鞋对足受力情况的影响,研究中发现虽然足底部关节或者软组织的应力以及应变会随着鞋跟高度的增加而增加,但适当的鞋跟高度能减少足底筋膜的拉伸应变,因此提出穿鞋跟高度适当的鞋可以作为治疗和康复足底筋膜炎的辅助治疗手段[57]。进一步的有限元研究也证明,鞋跟高度从0 cm增加到10.2 cm过程中,足底筋膜张力的大小并非线性变化,有一定高度鞋跟的鞋对足底筋膜承受张力的大小的影响并不比穿平底鞋大[62]。 2.3.2 鞋内垫设计方面 根据足部损伤情况定制适宜的鞋垫,可作为一种缓解后跟痛和足底腱膜炎的有效方法[19],例如带有足弓支撑的完全接触性鞋垫可以有效减少足底最大压力[36,48,63]。目前,关于鞋内垫的研究设计则集中在鞋垫形状和材料两个方面。为了设计一个最优的鞋垫形状,使作用于足底筋膜的拉伸应力最小化,Hsu等[64]借助有限元分析法,提出了一个设计优化预测鞋垫形状的方法,设置了7种不同的参数值,研究结果发现足底筋膜应力变与鞋垫形状有关,最优化设计的鞋垫可以使得足底筋膜应力以及峰值张力分别比用平鞋垫减小14%和38.9%。Hsu的研究还认为,虽然全接触鞋垫可以减轻足跟部疼痛,但在行走过程中会使得足弓处产生额外的挤压力,使足部产生不适感。Goske等[65]也利用有限元分析法模拟了3种形状(平面、半接触、全接触)和3个厚度(6.3、9.5和12.7 mm)以及3种材料的鞋垫对足底压力的影响,结果表明鞋垫形状对峰值压强影响较大,而鞋垫材料的影响不大。同样,Cheung等[66]通过有限元分析研究了在不同载荷及支撑条件下足底压力以及骨与软组织结构的内部应力和应变情况,发现在减少足底压力峰值上,鞋垫自定义形状比鞋垫本身的材料刚度更重要。"
[1] Clement DB, Taunton JE, Smart GW, et al.A Survey of Overuse Running Injuries.Phys Sportsmed.1981;9(5):47.[2] Taunton JE, Ryan MB, Clement DB, et al.A retrospective case-control analysis of 2002 running injuries.Br J Sports Med.2002;36(2):95-101.[3] Roxas M.Plantar fasciitis: diagnosis and therapeutic considerations. Altern Med Rev. 2005;10(2):83-93.[4] Rome K,Howe T,Haslock I.Risk factors associated with the development of plantar heel pain in athletes.Foot.2001;11(3):119-125.[5] Lemont H, Ammirati KM, Usen N,et al.Plantar fasciitis a degenerative process (fasciosis) without inflammation. J Am Podiatr Med Assoc. 2003;93(3):234-237.[6] Wearing SC, Smeathers JE, Urry SR, et al.The pathomechanics of plantar fasciitis.Sports Med. 2006;36(7):585-611.[7] Lurati AR.Flat Feet and a Diagnosis of Plantar Fasciitis in a Marine Corps Recruit.Workplace Health Saf.2015;63(4):136-138.[8] Riddle DL,Pulisic M, Pidcoe P, et al. Risk factors for Plantar fasciitis: a matched case-control study.J Bone Joint Surg Am.2003;85-A(5):872-877.[9] Irving DB,Cook JL,Young MA,et al.Obesity and pronated foot type may increase the risk of chronic plantar heel pain: a matched case-control study.BMC Musculoskelet Disord.2007;8:41.[10] Patel A, DiGiovanni B. Association between plantar fasciitis and isolated contracture of the gastrocnemius.Foot Ankle Int.2011;32(1): 5-8.[11] Shashua A, Flechter S, Avidan L, et al. The effect of additional ankle and midfoot mobilizations on plantar fasciitis: a randomized controlled trial.J Orthop Sports Phys Ther. 2015;45(4):265-272.[12] Cheung RT, Sze LK, Mok NW, et al.Intrinsic foot muscle volume in experienced runners with and without chronic plantar fasciitis.J Sci Med Sport.2016;19(9):713-715.[13] Harty J, Soffe K, O'Toole G, et al. The role of hamstring tightness in plantar fasciitis. Foot Ankle Int.2005;26(12):1089-1092.[14] Ribeiro AP, João SM, Dinato RC, et al.Dynamic Patterns of Forces and Loading Rate in Runners with Unilateral Plantar Fasciitis: A Cross-Sectional Study.Plos One.2015;10(9):e136971.[15] Pohl MB, Hamill J,Davis IS.Biomechanical and anatomic factors associated with a history of plantar fasciitis in female runners.Clin J Sport Med.2009;19(5):372-376.[16] Wearing SC, Smeathers JE, Urry SR. The effect of plantar fasciitis on vertical foot-ground reaction force.Clin Orthop Relat Res.2003;(409): 175-185.[17] Reb CW, Schick FA, Karanjia HN, et al.High Prevalence of Obesity and Female Gender Among Patients With Concomitant Tibialis Posterior Tendonitis and Plantar Fasciitis. Foot Ankle Spec.2015; 8(5):364-368.[18] van Leeuwen KD, Rogers J, Winzenberg T, et al. Higher body mass index is associated with plantar fasciopathy/'plantar fasciitis': systematic review and meta-analysis of various clinical and imaging risk factors. Br J Sports Med. 2016 ;50(16):972-281.[19] Walther M, Kratschmer B, Verschl J, et al. Effect of different orthotic concepts as first line treatment of plantar fasciitis.Foot Ankle Surg. 2013;19(2):103-107.[20] Agyekum EK, Ma K.Heel pain: A systematic review. Chin J Traumatol. 2015;18(3):164-169.[21] 张立宁,丁珮, 唐佩福.足底筋膜炎的基础及临床研究进展[J].海南医学院学报,2013,19(3):429-432.[22] 于宁, 毛德伟, 洪友廉.足底压力测量仪器的性能及在运动生物力学研究领域的应用[J].沈阳体育学院学报, 2007,26(6):60-62.[23] 黄若昆,谢鸣,勘武生,等.数字骨科学研究进展[J].中国矫形外科杂志,2010, 18(12):1003-1005.[24] 倪鹏辉,张鹰,杨晶,等.临床骨科中应用的有限元分析法:新理论与新进展[J]. 中国组织工程研究, 2016,20(31):4693-4699.[25] 李冰,王蕴,任连勇.“有限元法”的发展与应用[J]. 甘肃科技,2014, 30(1): 70-71.[26] 尹庆水,万磊. 数字骨科——信息化世纪的新骨科数字骨科入门(一)[J]. 中国骨科临床与基础研究杂志, 2009,1(1):77-78.[27] 弓太生,李姝,汤运启.足部有限元建模方法及其在医疗辅具中的应用现状研究[J]. 皮革科学与工程, 2015,(4):54-57.[28] 彭春政,陆爱云.有限元分析在足部生物力学研究中的应用现状[J].中国运动医学杂志, 2010,29(3):379-382.[29] Salathé EP Jr, Arangio GA, Salathé EP.A biomechanical model of the foot. J Biomech. 1986;19(12):989-1001.[30] 陶凯,王冬梅,王成焘,等.韧带和跖腱膜在足部有限元分析中的力学作用[J].生物医学工程学杂志, 2008,25(2):336-340.[31] 吴立军,丁自海,钟世镇,等. 足弓第2与第5跖列的肌骨系统有限元模型及其临床意义[J]. 中国临床解剖学杂志,2006,24(6):691-694.[32] Schepsis AA, Leach RE, Gorzyca J.Plantar fasciitis.Etiology, treatment, surgical results, and review of the literature. Clin Orthop Relat Res. 1991; (266):185-196.[33] Cheung JT,Zhang M,Leung A K, et al. Three-dimensional finite element analysis of the foot during standing--a material sensitivity study. J Biomech. 2005 ;38(5):1045-1054.[34] Benjamin M, Toumi H, Ralphs J R, et al. Where tendons and ligaments meet bone: attachment sites ('entheses') in relation to exercise and/or mechanical load.J Anat.2006;208(4):471-490.[35] Sun PC, Shih SL, Chen YL, et al. Biomechanical analysis of foot with different foot arch heights: a finite element analysis.Comput Methods Biomech Biomed Engin.2012;15(6):563-569.[36] 张明,张德文,余嘉,等.足部三维有限元建模方法及其生物力学应用[J].医用生物力学, 2007,22(4):339-344.[37] 刘颖,周思远,郑拥军,等. 基于有限元分析腓肠肌作用力对足部生物力学的影响[J]. 医用生物力学, 2016,31(5):437-442.[38] Wu L.Nonlinear finite element analysis for musculoskeletal biomechanics of medial and lateral plantar longitudinal arch of Virtual Chinese Human after plantar ligamentous structure failures. Clin Biomech (Bristol, Avon).2007;22(2):221-229.[39] Chen YN, Chang CW, Li CT, et al.Finite element analysis of plantar fascia during walking: a quasi-static simulation.Foot Ankle Int.2015;36(1):90-97.[40] Cheng HY, Lin CL,Chou SW, et al. Nonlinear finite element analysis of the plantar fascia due to the windlass mechanism.Foot Ankle Int.2008;29(8):845-851.[41] Gefen A, Megido-Ravid M,Itzchak Y,et al. Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications. J Biomech Eng.2000;122(6):630-639.[42] Lin S, Chen CP, Tang SF, et al. Stress distribution within the plantar aponeurosis during walking - a dynamic finite element analysis. J Mech Med Biol. 2014;14:1450053-1-17.[43] Cheng HY, Lin CL,Wang HW, et al. Finite element analysis of plantar fascia under stretch-The relative contribution of windlass mechanism and Achilles tendon force. J Biomech. 2008;41(9):1937-1944.[44] Flanigan RM, Nawoczenski DA, Chen L,et al.The influence of foot position on stretching of the plantar fascia.Foot Ankle Int.2007;28(7): 815-822.[45] Alkhamaali ZK, Crocombe AD,Solan MC,et al.Finite element modelling of radial shock wave therapy for chronic plantar fasciitis.Comput Methods Biomech Biomed Engin.2016;19(10):1069-1078.[46] Ren L,Ren LQ, Ding Y,et al.A material sensitivity analysis of plantar fascia based on a three dimensional finite element musculoskeletal model of human foot complex. Rivista Internazionale Di Economia Dei Transporti.2013;52(3):353-372.[47] Gefen A.Stress analysis of the standing foot following surgical plantar fascia release.J Biomech.2002;35(5):629-637.[48] Cheung JT, Zhang M,An KN.Effect of Achilles tendon loading on plantar fascia tension in the standing foot.Clin Biomech (Bristol, Avon). 2006;21(2):194-203.[49] Gefen A. Plantar soft tissue loading under the medial metatarsals in the standing diabetic foot. Med Eng Phys. 2003,25(6):491-499.[50] Tao K, Ji WT, Wang DM, et al.Relative contributions of plantar fascia and ligaments on the arch static stability: a finite element study. Biomed Tech (Berl).2010;55(5):265-271.[51] Liang J, Yang Y, Yu G, et al. Deformation and stress distribution of the human foot after plantar ligaments release: a cadaveric study and finite element analysis.Sci China Life Sci. 2011;54(3):267-271.[52] Borrelli, Henry A.Percutaneous Plantar Fasciotomy for the Surgical Treatment of Refractive Plantar Fasciitis.Tech Foot Ankle Surg.2011; 10(2):49-55.[53] Guo JC, Wang LZ, Mo ZJ, et al. Biomechanical analysis of suture locations of the distal plantar fascia in partial foot.Int Orthop.2015;39(12):2373-2380.[54] Erdemir A, Saucerman JJ, Lemmon D, et al. Local plantar pressure relief in therapeutic footwear: design guidelines from finite element models. J Biomech. 2005;38(9):1798-1806.[55] Chen WM, Lee SJ, Lee PV. Plantar pressure relief under the metatarsal heads - Therapeutic insole design using three-dimensional finite element model of the foot. J Biomech. 2015;48(4):659-665.[56] Jeon SM, Kim C.Pressure Analysis of Plantar Musculoskeletal Fascia while Walking using Finite Element Analyses. Transactions of the Korean Society of Mechanical Engineers A.2012;36(8):72.[57] Yu J, Wong DW,Zhang H,et al.The influence of high-heeled shoes on strain and tension force of the anterior talofibular ligament and plantar fascia during balanced standing and walking. Med Eng Phys. 2016; 38(10):1152-1156.[58] 顾耀东,李建设,陆毅琛,等.提踵状态下足纵弓应力分布有限元分析[J].体育科学,2005;25(11):87-89.[59] Marshall P. The rehabilitation of overuse foot injuries in athletes and dancers.Clin Sports Med.1988;7(1):175-191.[60] Kogler GF, Veer FB, Verhulst SJ, et al. The effect of heel elevation on strain within the plantar aponeurosis: in vitro study.Foot Ankle Int.2001; 22(5):433-439.[61] Yu J, Cheung JT, Fan Y,et al.Development of a finite element model of female foot for high-heeled shoe design.Clin Biomech (Bristol, Avon). 2008;23 Suppl 1:S31-S38.[62] Yan Luximon, Ameersing Luximonx, JiaYu, et al. Biomechanical evaluation of heel elevation on load transfer-experimental measurement and finite element analysis.Acta Mechanica Sinica. 2012;28(1):232-240.[63] Cheung JT, An K N, Zhang M. Consequences of partial and total plantar fascia release: a finite element study.Foot Ankle Int.2006;27(2): 125-132.[64] Hsu YC, Gung YW, Shih SL, et al.Using an optimization approach to design an insole for lowering plantar fascia stress--a finite element study.Ann Biomed Eng.2008;36(8):1345-1352.[65] Goske S, Erdemir A, Petre M, et al.Reduction of plantar heel pressures: Insole design using finite element analysis.J Biomech.2006;39(13): 2363-2370.[66] Cheung JT, Zhang M.A 3-dimensional finite element model of the human foot and ankle for insole design. Arch Phys Med Rehabil.2005; 86(2):353-358. |
[1] | Xu Feng, Kang Hui, Wei Tanjun, Xi Jintao. Biomechanical analysis of different fixation methods of pedicle screws for thoracolumbar fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1313-1317. |
[2] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[3] | Chen Xinmin, Li Wenbiao, Xiong Kaikai, Xiong Xiaoyan, Zheng Liqin, Li Musheng, Zheng Yongze, Lin Ziling. Type A3.3 femoral intertrochanteric fracture with augmented proximal femoral nail anti-rotation in the elderly: finite element analysis of the optimal amount of bone cement [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1404-1409. |
[4] | Zhou Jihui, Li Xinzhi, Zhou You, Huang Wei, Chen Wenyao. Multiple problems in the selection of implants for patellar fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1440-1445. |
[5] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
[6] | Xu Yulin, Shen Shi, Zhuo Naiqiang, Yang Huilin, Yang Chao, Li Yang, Zhao Heng, Zhao Lu. Biomechanical comparison of three different plate fixation methods for acetabular posterior column fractures in standing and sitting positions [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 826-830. |
[7] | Cai Qunbin, Zou Xia, Hu Jiantao, Chen Xinmin, Zheng Liqin, Huang Peizhen, Lin Ziling, Jiang Ziwei. Relationship between tip-apex distance and stability of intertrochanteric femoral fractures with proximal femoral anti-rotation nail: a finite element analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 831-836. |
[8] | Song Chengjie, Chang Hengrui, Shi Mingxin, Meng Xianzhong. Research progress in biomechanical stability of lateral lumbar interbody fusion [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 923-928. |
[9] | Liu Zhao, Xu Xilin, Shen Yiwei, Zhang Xiaofeng, Lü Hang, Zhao Jun, Wang Zhengchun, Liu Xuzhuo, Wang Haitao. Guiding role and prospect of staging and classification combined collapse prediction method for osteonecrosis of femoral head [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 929-934. |
[10] | Xie Chongxin, Zhang Lei. Comparison of knee degeneration after anterior cruciate ligament reconstruction with or without remnant preservation [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 735-740. |
[11] | Xu Dongzi, Zhang Ting, Ouyang Zhaolian. The global competitive situation of cardiac tissue engineering based on patent analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 807-812. |
[12] | Wu Zijian, Hu Zhaoduan, Xie Youqiong, Wang Feng, Li Jia, Li Bocun, Cai Guowei, Peng Rui. Three-dimensional printing technology and bone tissue engineering research: literature metrology and visual analysis of research hotspots [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 564-569. |
[13] | Chang Wenliao, Zhao Jie, Sun Xiaoliang, Wang Kun, Wu Guofeng, Zhou Jian, Li Shuxiang, Sun Han. Material selection, theoretical design and biomimetic function of artificial periosteum [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 600-606. |
[14] | Liu Fei, Cui Yutao, Liu He. Advantages and problems of local antibiotic delivery system in the treatment of osteomyelitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 614-620. |
[15] | Li Xiaozhuang, Duan Hao, Wang Weizhou, Tang Zhihong, Wang Yanghao, He Fei. Application of bone tissue engineering materials in the treatment of bone defect diseases in vivo [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 626-631. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||