Chinese Journal of Tissue Engineering Research ›› 2017, Vol. 21 ›› Issue (5): 809-814.doi: 10.3969/j.issn.2095-4344.2017.05.025
Previous Articles Next Articles
Huang Ze-nan, Feng Xin-min, Wang Jing-cheng, Chen Tao, Bi Song-chao, Zhang Liang
Online:
2017-02-18
Published:
2017-03-20
Contact:
Zhang Liang, Associate chief physician, Lecturer, Medical College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China
About author:
Huang Ze-nan, Studying for master’s degree, Medical College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China
Supported by:
the National Natural Science Foundation of China, No. 81401830; the China Postdoctoral Science Foundation, No. 2015M571714; the Natural Science Foundation of Jiangsu Province, No. BK 20140496
CLC Number:
Huang Ze-nan, Feng Xin-min, Wang Jing-cheng, Chen Tao, Bi Song-chao, Zhang Liang. Simvastatin regulates endogenous stem cells to reconstruct the degenerative intervertebral disc[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(5): 809-814.
2.1 干细胞治疗椎间盘退变性疾病的研究现状及困难 2.1.1 干细胞治疗椎间盘退变性疾病的研究现状 目前,干细胞移植治疗研究主要包括自体或异体椎间盘细胞移植,其中研究最热的是骨髓间充质干细胞的移植。自 Risbud 等[3]首次证实骨髓间质干细胞在低氧和转化生长因子β1条件下可向类髓核细胞分化后,不同动物和人多种组织来源(如骨髓,脂肪,脐带,滑膜和肌组织等)的成体干细胞及多能干细胞在体外均可向类髓核细胞分化[4-7],这为利用干细胞治疗椎间盘退变性疾病提供了理论可能。Sakai等[8]制作兔退变椎间盘模型,首次成功移植骨髓间充质干细胞并进行连续48周的骨髓间充质干细胞记数,采用免疫组织化学法测定分化的骨髓间充质干细胞数量,RC-PCR半定量测定椎间盘蛋白聚糖含量,结果发现移植的骨髓间充质干细胞能够持续存活且不断地增殖,并能分化且表现出髓核细胞的特征,另外还可以促进髓核细胞外基质表达。他们进一步研究通过LacZ基因标记自体间充质干细胞,采用Atelcollagen支架包埋骨髓间充质干细胞,并将支架植入兔的椎间盘退变模型,并与正常组及退变模型假手术组进行对照,从免疫组织化学,组织学,影像学包括X射线、MRI等及基质相关基因的表达等方面进行观测,结果发现在椎间盘修复方面的效果,移植骨髓间充质干细胞组要优于假手术组,这表明自体干细胞移植治疗椎间盘退变是具有广阔的前景[9]。这些体内外实验研究均已取得令人振奋的结果,证实干细胞移植治疗有效,而其中间充质干细胞具有获取容易,又具有向髓核细胞分化和传代繁殖能力,以及比较低的免疫免疫原性等特点。 为了让移植的干细胞能够更好存活并发挥功能,细胞支架三维培养及细胞因子逐渐被应用。Yang 等[10]将负载有骨髓间充质干细胞及转化生长因子β1的支架植入兔退变椎间盘内,并与退变组及只移植转化生长因子β1组进行对照,从免疫组织化学,组织学,影像学包括X射线、MRI等及基质相关基因的表达等方面进行观测,结果发现负载骨髓间充质干细胞及转化生长因子β1支架组与退变组及单纯移植转化生长因子β1组相比,髓核细胞凋亡被抑制,椎间盘高度丢失减慢。 2.1.2 干细胞治疗椎间盘退变性疾病的困难 当然,在尝试使用干细胞治疗椎间盘退变性疾病的同时,也发现了相关问题。Vadala将兔骨髓间充质干细胞进行体外培养扩增,3周后按1×105将骨髓间充质干细胞注射入退变椎间盘,并与未移植组进行对比,3,9周后通过MRI并未发现退变椎间盘修复表现,反而在注射节段椎间盘前外侧发现大量骨赘形成,周围包绕含标记干细胞的软骨,提示移植的间充质干细胞可能从纤维环渗漏并造成令人意想不到的麻烦[11]。同时对于移植后间充质干细胞的状态进行进一步研究,发现大部分间充质干细胞滞留在移植区域,仅有少部分发生迁移,而且耗时很长,很难达到有效修复椎间盘退变的目的[12]。另外,由于干细胞移植都必须经过实验室干细胞分离、培养、定向诱导分化甚至基因操作,存在来自干细胞的内源性的和操作过程中外源性的生物危害风险。同时自体和同种一体干细胞移植治疗均已有致瘤的报道[13-14]。由此可见,外源性干细胞移植治疗椎间盘退变性疾病仍存在一定的问题。 2.2 椎间盘内源性干细胞的相关性研究 2.2.1 髓核间充质干细胞 随着对干细胞了解的不断深入,逐渐理解内源性干细胞在体内的迁移和运动的机制,利用此机制来诱导自身干细胞激活从而能够内源性修复和重建退变的椎间盘,这有望解决如体外干细胞在移植区域停滞等困难,具有广阔的研究前景和临床应用空间[15]。2010年Blanco等用Ⅱ型胶原酶消化了人的退变椎间盘髓核组织,首次从中分离和培养出间质干细胞,并与骨髓间充质干细胞对比,发现该细胞在形态学和免疫组织化学等方面与骨髓间充质干细胞相类似,但是新培养出的间充质干细胞虽然也具有成软骨及成骨能力,却没有成脂能力,同时发现此类细胞符合国际细胞治疗学会有关多能间质干细胞的界定标准[2,16-17]。Li等[18]从SD大鼠腹股沟脂肪与椎间盘中分别分离出脂肪间充质干细胞和髓核间充质干细胞,并分别置于体积分数20%氧气和体积分数2%的氧气环境中培养增殖14 d,结果发现在模拟椎间盘内低氧环境下,髓核间质干细胞较脂肪间充质干细胞表现出更好的活力、增殖能力及向髓核细胞分化的能力。Tao等[19]将髓核细胞和髓核间充质干细胞在模拟椎间盘内高渗透压的微环境中进行体外共培养,发现椎间盘内的高渗透压环境对于髓核细胞增殖及细胞外基质合成具有轻度抑制作用,但是髓核间质干细胞能够可以较好地耐受高渗透压,同时髓核细胞/髓核间质干细胞共培养可促进细胞增殖及细胞外基质合成。以上结果显示能够把退变椎间盘髓核组织中的内源性干细胞-髓核间充质干细胞作为新的种子细胞来修复和重建退变的椎间盘。 2.2.2 低氧微环境对干细胞的影响 目前研究的热点是如何使得间质干细胞更好的向目标细胞分化。干细胞具有自我分化和更新的能力,因此其所处得微环境也相当重要。现研究发现干细胞存在于低氧微环境内[20-21],推测低氧可能有助于维持干细胞/前体细胞的未分化表型。椎间盘内的细胞尤其是髓核细胞长期处于细胞外基质如蛋白聚糖及胶原等的包围中,所以处于一种极端的低氧甚至无氧环境中[22]。 低氧反应时,缺氧诱导因子1可以作为维持细胞内环境稳定和基因表达的调节中心,当组织或者细胞低氧时,缺氧诱导因子1这个调节中心首先转录水平增加,随后与下游的一系列靶基因结合,从而提高细胞对低氧的耐受能力[23]。Wang等[24]将骨髓间充质干细胞分为6组:正常组、缺氧在给氧组、环保灵素A组、低氧预处理10 min组、20 min组、30 min组,并检测缺氧诱导因子1、血管内皮生长因子、ERK(extracellular regulated kinase)及凋亡指数等指标,结果发现低氧预处理可能可以通过稳定线粒体膜电位,上调抗凋亡蛋白Bcl-2和血管内皮生长因子表达,促进ERK及Akt磷酸化来降低间充质干细胞在缺血再灌注时的凋亡。Weil等[25]将间充质干细胞低氧预处理1 h,再重新给氧24 h,将低氧-再给氧后的间充质干细胞用于治疗损伤的胎儿肠上皮细胞时发现,低氧可能通过促进白细胞介素6,血管内皮生长因子分泌以及下调caspase-3表达来促进间充质干细胞增殖。Lan等[26]发现低氧培养环境促进间充质干细胞转移及毛细血管三维结构的形成,其过程为低氧诱导缺氧诱导因子1α表达上调完成的。Zhang及Feng等[27-28]研究证实低氧可以诱导在3D支架上培养的兔骨髓间质干细胞及脂肪间质干细胞向髓核细胞分化,在其中缺氧诱导因子1α表达变化可能发挥了重要作用。因此,低氧环境可能主要通过减少氧自由基产生,促进缺氧诱导因子1α表达并诱导相关生长因子表达,来降低间充质干细胞凋亡,提高细胞增殖,分化及迁移能力。所以椎间盘内的低氧微环境能够减少氧自由基形成,促进低氧诱导因子的表达从而可以调控椎间盘内的髓核间充质干细胞的生物学行为,进而来延缓椎间盘退变的进程,这也能充分说明髓核间充质干细胞能够成为新的种子细胞来内源性治疗退变的椎间盘。 2.2.3 缺氧诱导因子 在细胞内的低氧反应中,缺氧诱导因子是一类关键性转录调控因子,目前哺乳动物体内发现3种缺氧诱导因子,即缺氧诱导因子1,缺氧诱导因子2,缺氧诱导因子3[29]。目前认为在这3种类型中,缺氧诱导因子1表达最为广泛,特别是在低氧组织中,缺氧诱导因子1能与下游一系列的靶基因结合,从而可以改善组织缺氧、缺血。缺氧诱导因子1常常以异源二聚体形式存在-分为α亚基和持续表达的β亚基。β亚单位又被称为芳香烃受体核转运子(ARNT),α亚单位的结构域包括2个主要参与转录激活作用的反式激活结构域和1个独特的氧依赖降解结构域(正常氧分压下缺氧诱导因子1降解所必需的结构)。缺氧诱导因子1通过2个亚基的寡聚及与目标基因增强子(低氧反应元件)结合反式激活缺氧诱导因子1靶基因。缺氧诱导因子1α和缺氧诱导因子2α共同决定缺氧诱导因子1活性。在常氧条件下,缺氧诱导因子1表达较低,但当机体或者组织缺氧时,缺氧诱导因子1α能够迅速聚集转移至细胞核,与缺氧诱导因子1β结合形成二聚体,可调控糖酵解酶葡萄糖转运体1、血管内皮生长因子、促红细胞生成素(EPO)等一系列低氧诱导基因的表达,从而产生一系列生物学效应[30]。 2002年,Rajpurohit等[31]首次对大鼠髓核、纤维环及软骨终板分别进行Western blot和免疫组织化学分析,发现在髓核中存在缺氧诱导因子1α表达,而在纤维环及软骨终板中没有表达。Ikemori等[32-33]研究发现缺氧诱导因子1α能够通过促进半乳糖凝集素3(Galectin-3 Gal-3)表达来抑制Fasl介导的髓核细胞凋亡进程,由此认为缺氧诱导因子1α能够抑制髓核细胞凋亡。Croutze等[34]研究发现缺氧诱导因子1α可直接诱导聚集蛋白聚糖mRNA及蛋白表达来促进椎间盘细胞外基质蛋白聚糖表达,而Gogate等[35]发现缺氧诱导因子1α通过调节髓核细胞的β-1,3葡糖醛内酯转移酶1表达来促进细胞外基质糖胺聚糖表达。 在线粒体和葡萄糖能量代谢中,缺氧诱导因子1起关键作用。无氧酵解时,缺氧诱导因子1可以增加合成葡萄糖转运蛋白所需要关键酶的数量。因此,维持髓核细胞能量代谢活动中缺氧诱导因子1是必不可少的。葡萄糖转运蛋白是能够顺着细胞膜表明的浓度梯度转运葡萄糖的一种膜构成蛋白。在低氧环境中,无氧糖酵解是髓核细胞能量代谢的主要形式。在正常与退变的椎间盘中葡萄糖转运蛋白1,葡萄糖转运蛋白3,葡萄糖转运蛋白9和缺氧诱导因子1均表达。但是,缺氧诱导因子1在退变椎间盘中的表达高于正常椎间盘;低氧条件下,椎间盘中缺氧诱导因子1主要通过调控葡萄糖转运蛋白1,葡萄糖转运蛋白3,葡萄糖转运蛋白9的表达来维持髓核细胞的代谢活动。早期研究结果亦显示缺氧诱导因子1α能够上调葡萄糖转运蛋白葡萄糖转运蛋白1等相关因子表达,而葡萄糖转运蛋白葡萄糖转运蛋白1在调节椎间盘细胞能量代谢活动中起重要作用,因此缺氧诱导因子1α能够影响椎间盘退变进程[36]。 以上结果说明随着椎间盘退变,椎间盘细胞缺氧进一步加重,缺氧诱导因子1α表达增加,而缺氧诱导因子1α可能通过调节椎间盘细胞凋亡,细胞能量代谢活动及细胞外基质的表达等途径在椎间盘退变过程中起关键作用。 2.3 他汀类药物对椎间细胞及干细胞影响的相关研究 他汀类药物是最为经典和有效的降脂药物,广泛用于高脂血症的治疗,主要作用是抑制3羟-3甲基戊二酸单酰辅酶A(HMG-CoA)还原酶活性,而3羟-3甲基戊二酸单酰辅酶A(HMG-CoA)还原酶是胆固醇合成时的关键酶,所以他汀类药物能减少体内胆固醇的合成-降低血液中总的胆固醇的含量;同时还能有效减少血栓沉积,改善血管内皮功能,延缓动脉粥样硬化过程和降低血小板聚集。从而起到稳定、消退动脉粥样硬化斑块的作用。 2.3.1 他汀类药物对椎间盘细胞的影响 最近文献报道他汀类药物可通过增加干细胞数量及强化干细胞功能等多方面增强干细胞的治疗作用[37-38]。Zhang等[39]通过从SD大鼠的椎间盘中分离出髓核细胞,与不同浓度的辛伐他汀进行共培养,结果发现辛伐他汀通过抑制甲羟戊酸的形成来促进髓核细胞骨形态发生蛋白2、聚集蛋白聚糖及Π型胶原等细胞外基质mRNA表达;进一步进行体内实验,用21号针头穿刺到30只SD大鼠尾椎椎间隙中,建立退变模型,建模4周后再将负荷辛伐他汀的缓释凝胶植入发生椎间盘退变的椎间隙,结果发现在植入缓释凝胶2周后,MRI信号有了明显的好转,通过PCR及Western-blot等提示髓核细胞细胞外基质-骨形态发生蛋白2 mRNA,Ⅱ型胶原表达增加,同时髓核细胞外基质的合成也增多[40]。另外,Hu等[41]研究发现他汀类药物洛伐他汀可以使单层培养的已去分化的髓核细胞表型发生逆转,从而促进Ⅱ型胶原等细胞外基质表达。以上结果显示他汀类药物能够促进椎间盘细胞骨形态发生蛋白2、聚集蛋白聚糖及Ⅱ型胶原等细胞外基质mRNA达,同时也能使已去分化的髓核细胞表型发生逆转,从而能减缓椎间盘退变过程。 2.3.2 他汀类药物对干细胞的影响 研究发现辛伐他汀可以通过分泌骨形态发生蛋白2及缺氧诱导因子1α促进骨髓间质干细胞及内皮细胞动员入血来促进颅骨缺损修补[42]。自从Song等[43]研究证实辛伐他汀可在体外促进大鼠骨髓间质干细胞的成骨分化,同时抑制其向成脂方向分化,近期在多项体内外研究中辛伐他汀被证实可以促进人牙周膜干细胞、羊水干细胞、骨髓间质干细胞等多种细胞的成骨分化,提示辛伐他汀可能具有调节细胞定向分化的能力[44-46]。Zanette等[47]分别从羊膜和骨髓分离出间充质干细胞,并与辛伐他汀共培养。将共培养2周后的细胞分别进行琥珀羧基荧光素二醋酸酯染色和进行RT-PCR分析。结果发现辛伐他汀能够促进间充质干细胞增殖同时也能延缓干细胞的衰老。Chuang等[48]将辛伐他汀与骨髓间充质干细胞共培养,并与未共培养组作对比。结果发现共培养组能够促进骨髓间充质干细胞成骨分化。 因此,辛伐他汀可能可以通过促进缺氧诱导因子1α表达等途径来调控髓核间质干细胞的生物学行为;同时通过促进髓核细胞骨形态发生蛋白2表达及重建却分化的髓核细胞表型,来促进II型胶原、聚集蛋白聚糖等细胞外基质的表达,进而影响椎间盘退变进程。"
[1] Risbud MV, Guttapalli A, Tsai TT,et al.Evidence for skeletal progenitor cells in the degenerate human intervertebral disc.Spine (Phila Pa 1976).2007;32(23):2537-2544.[2] Blanco JF, Graciani IF, Sanchez-Guijo FM, et al. Isolation and characterization of mesenchymal stromal cells from human degenerated nucleus pulposus: comparison with bone marrow mesenchymal stromal cells from the same subjects. Spine (Phila Pa 1976).2010;35(26):2259-2265. [3] Risbud MV, Albert TJ, Guttapalli A, et al. Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro: implications for cell-based transplantation therapy. Spine (Phila Pa 1976).2004; 29(23):2627-2632. [4] Chon BH, Lee EJ, Jing L, et al. Human umbilical cord mesenchymal stromal cells exhibit immature nucleus pulposus cell phenotype in a laminin-rich pseudo-three- dimensional culture system. Stem Cell Res Ther.2013; 4(5):120. [5] He F, Pei M. Rejuvenation of nucleus pulposus cells using extracellular matrix deposited by synovium-derived stem cells. Spine.2012;37(6):459-469. [6] Yang Z, Huang CY, Candiotti KA, et al. Sox-9 facilitates differentiation of adipose tissue-derived stem cells into a chondrocyte like phenotype in vitro. J Orthop Res. 2011; 29(8): 1291-1297. [7] Chen J, Lee EJ, Jing L, et al. Differentiation of mouse induced pluripotent stem cells (iPSCs) into nucleus pulposus-like cells in vitro.PLoS One.2013;8(9):e75548. [8] Sakai D, Mochida J, Yamamoto Y, et al. Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials.2003;24(20):3531-3541. [9] Sakai D,Bertram H,Abel R ,et al.Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model:potential and limitations forstem cell therapyin disc degeneration.Spine.2005;30(21):2379-2387[10] Yang H, Wu J, Liu J, et al. Transplanted mesenchymal stem cells with pure fibrinous gelatin-transforming growth factor-beta1 decrease rabbit intervertebral disc degeneration. Spine J.2010;10(9):802-810. [11] Vadala G, Sowa G, Hubert M, et al. Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation. J Tissue Eng Regen Med. 2012; 6(5):348-355. [12] Henriksson HB, Svala E, Skioldebrand E, et al. Support of concept that migrating progenitor cells from stem cell niches contribute to normal regeneration of the adult mammal intervertebral disc: a descriptive study in the New Zealand white rabbit. Spine.2012;37(9):722-732. [13] Nikitina VA, Chausheva AI.Risk of genetic transformation of multipotent mesenchymal stromal cells in vitro.Genetika. 2014;50(1):100-105.[14] Kamat P, Schweizer R, Kaenel P, et al.Human Adipose-Derived Mesenchymal Stromal Cells May Promote Breast Cancer Progression and Metastatic Spread.Plast Reconstr Surg.2015;136(1):76-84. [15] 张亮.髓核间充质干细胞动员修复重建退变椎间盘[J].中国组织工程研究,2015,19(53):8636-8637.[16] Mizrahi O, Sheyn D, Tawackoli W, et al. Nucleus pulposus degeneration alters properties of resident progenitor cells. Spine J.2013;13(7):803-814.[17] 黄成,杨建东,冯新民.胶质细胞源性神经因子基因修饰后间质干细胞的生长与分化[J].中国组织工程研究,2013,45:7932-7938.[18] Li H, Tao Y, Liang C, et al. Influence of Hypoxia in the Intervertebral Disc on the Biological Behaviors of Rat Adipose- and Nucleus Pulposus-Derived Mesenchymal Stem Cells. Cells Tissues Organs. Cells Tissues Organs. 2013; 198(4):266-77. [19] Tao YQ, Liang CZ, Li H, et al. Potential of co-culture of nucleus pulposus mesenchymal stem cells and nucleus pulposus cells in hyperosmotic microenvironment for intervertebral disc regeneration. Cell Biol Int.2013;37(8): 826-834. [20] Goncalves GA, Invitti AL, Parreira RM,et al. p27kip1 overexpression regulates IL-1β in the microenvironment of stem cells and eutopic endometriosis co-cultures.Cytokine. Cytokine. 2016 Jan 23.[21] Wang XM, Yang YJ, Wu YJ,et al.Attenuating Hypoxia-Induced Apoptosis and Autophagy of Mesenchymal Stem Cells: the Potential of Sitagliptin in Stem Cell-Based Therapy.Cell Physiol Biochem.2015;37(5):1914-1926. [22] Wei A, Shen B, Williams L,et al.Mesenchymal stem cells: potential application in intervertebral disc regeneration.Transl Pediatr.2014;3(2): 71-90.[23] Roitbak T, Surviladze Z, Cunningham LA,et al. Continuous Expression of HIF-1α in Neural Stem/ Progenitor Cells. Cell Mol Neurobiol.2011;31(1):119-133.[24] Wang JA, Chen TL, Jiang J, et al. Hypoxic preconditioning attenuates hypoxia/reoxygenation-induced apoptosis in mesenchymal stem cells. Acta Pharmacol Sin.2008;29(1): 74-82.[25] Weil BR, Markel TA, Herrmann JL, et al. Mesenchymal stem cells enhance the viability and proliferation of human fetal intestinal epithelial cells following hypoxic injury via paracrine mechanisms. Surgery.2009;146(2):190-197. [26] Lan YW, Choo KB, Chen CM, et al. Hypoxia-preconditioned mesenchymal stem cells attenuate bleomycin-induced pulmonary fibrosis.Stem Cell Res The.2015;6(1): 97.[27] Zhang Z, Li F, Tian H, et al. Differentiation of adipose- derived stem cells toward nucleus pulposus-like cells induced by hypoxia and a three-dimensional chitosan- alginate gel scaffold in vitro. Chin Med J (Engl).2014; 127(2):314-321. [28] Feng G, Jin X, Hu J, et al. Effects of hypoxias and scaffold architecture on rabbit mesenchymal stem cell differentiation towards a nucleus pulposus-like phenotype. Biomaterials. 2011; 32(32):8182-8189.[29] Bracken CP, Whitelaw ML, Peet DJ.The hypoxia-inducible factors: key transcriptional regulators of hypoxic responses. Cell Mol Life Sci.2003;60(7):1376-1393.[30] Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell.2010; 40(2):294-309.[31] Rajpurohit R, Risbud MV, Ducheyne P, et al. Phenotypic characteristics of the nucleus pulposus: expression of hypoxia inducing factor-1, glucose transporter-1 and MMP-2. Cell Tissue Res.2002;308(3):401-407. [32] Ikemori RY, Machado CM, Furuzawa KM, et al.Galectin-3 Up-Regulation in Hypoxic and Nutrient Deprived Microenvironments Promotes Cell Survival.PLoS One.2014; 9(11): e111592.[33] Merceron C, Mangiavini L, Robling A, et al.Loss of HIF-1α in the Notochord Results in Cell Death and Complete Disappearance of the Nucleus Pulposus.PLoS One.2014; 9(10): e110768[34] Croutze R, Jomha N, Uludag H, et al.Matrix forming characteristics of inner and outer human meniscus cells on 3D collagen scaffolds under normal and low oxygen tensions.BMC Musculoskelet Disord.2013;14: 353.[35] Gogate SS,Nasser R,Shapiro IM,et al.Hypoxic regulation of beta-1,3-glucuronyltransferase 1 expression in nucleus pulposus cells of the rat intervertebral disc: role of hypoxia-inducible factor proteins.Arthritis Rheum.2011; 63(7):1950-1960. [36] 齐峰,贾长青,赵嘉国,等.缺氧诱导因子-1α和葡萄糖转运蛋白1在不同月龄大鼠椎间盘中的表达[J].中国组织工程研究与临床康复, 2010,19(1):20-25. [37] Park A, Barrera-Ramirez J, Ranasinghe I, et al.Use of Statins to Augment Progenitor Cell Function in Preclinical and Clinical Studies of Regenerative Therapy: a Systematic Review.Stem Cell Rev.2016;[38] Zanette DL, Lorenzi JC, Panepucci RA, et al.Simvastatin Modulates Mesenchymal Stromal Cell Proliferation and Gene Expression.PLoS One.2015;10(4): e0120137.[39] Zhang H,Lin CY.Simvastatin stimulates chondrogenic phenotype of intervertebral disc cells partially through BMP-2 pathway. Spine (Phila Pa 1976). 2008;33(16):E525-531.[40] Zhang H, Wang L, Park JB, et al.Intradiscal injection of simvastatin retards progression of intervertebral disc degeneration induced by stab injury.Arthritis Res Ther.2009; 11(6):R172. [41] Hu MH, Hung LW, Yang SH, et al. Lovastatin promotes redifferentiation of human nucleus pulposus cells during expansion in monolayer culture.Artif Organs.2011;35(4): 411-416. [42] Yueyi C, Xiaoguang H, Jingying W, et al. Calvarial defect healing by recruitment of autogenous osteogenic stem cells using locally applied simvastatin. Biomaterials. 2013; 34(37): 9373-9380[43] Song C, Guo Z, Ma Q, et al. Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells. Biochem Biophys Res Commun. 2003; 308(3):458-462.[44] Wadagaki R, Mizuno D, Yamawaki-Ogata A, et al. Osteogenic induction of bone marrow-derived stromal cells on simvastatin-releasing, biodegradable, nano-to microscale fiber scaffolds. Ann Biomed Eng.2011;39(7):1872-1881.[45] Zhao BJ, Liu YH. Simvastatin induces the osteogenic differentiation of human periodontal ligament stem cells. Fundam Clin Pharmacol.2013;doi: 10.1111/fcp.12050. [46] de Lara Janz F, Favero GM, Bohatch MS, et al.Simvastatin induces osteogenic differentiation in human amniotic fluid mesenchymal stem cells (AFMSC). Fundam Clin Pharmacol. 2012; doi: 10.1111/fcp.12006[47] Zanette DL, Lorenzi JC, Panepucci RA, et al.Simvastatin Modulates Mesenchymal Stromal Cell Proliferation and Gene Expression.PLoS One. 2015 10(4):e0120137.[48] Chuang SC,Chen CH,Fu YC,et al.Estrogen receptor mediates simvastatin-stimulated osteogenic effects in bone marrow mesenchymal stem cells.Biochem Pharmacol. 2015; 98(3):453-464. |
[1] | Yao Xiaoling, Peng Jiancheng, Xu Yuerong, Yang Zhidong, Zhang Shuncong. Variable-angle zero-notch anterior interbody fusion system in the treatment of cervical spondylotic myelopathy: 30-month follow-up [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1377-1382. |
[2] | Wang Jing, Xiong Shan, Cao Jin, Feng Linwei, Wang Xin. Role and mechanism of interleukin-3 in bone metabolism [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(8): 1260-1265. |
[3] | Xiao Hao, Liu Jing, Zhou Jun. Research progress of pulsed electromagnetic field in the treatment of postmenopausal osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(8): 1266-1271. |
[4] | Tian Chuan, Zhu Xiangqing, Yang Zailing, Yan Donghai, Li Ye, Wang Yanying, Yang Yukun, He Jie, Lü Guanke, Cai Xuemin, Shu Liping, He Zhixu, Pan Xinghua. Bone marrow mesenchymal stem cells regulate ovarian aging in macaques [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 985-991. |
[5] | Hou Jingying, Guo Tianzhu, Yu Menglei, Long Huibao, Wu Hao. Hypoxia preconditioning targets and downregulates miR-195 and promotes bone marrow mesenchymal stem cell survival and pro-angiogenic potential by activating MALAT1 [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1005-1011. |
[6] | Liang Xuezhen, Yang Xi, Li Jiacheng, Luo Di, Xu Bo, Li Gang. Bushen Huoxue capsule regulates osteogenic and adipogenic differentiation of rat bone marrow mesenchymal stem cells via Hedgehog signaling pathway [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1020-1026. |
[7] | An Weizheng, He Xiao, Ren Shuai, Liu Jianyu. Potential of muscle-derived stem cells in peripheral nerve regeneration [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1130-1136. |
[8] | Wen Dandan, Li Qiang, Shen Caiqi, Ji Zhe, Jin Peisheng. Nocardia rubra cell wall skeleton for extemal use improves the viability of adipogenic mesenchymal stem cells and promotes diabetes wound repair [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1038-1044. |
[9] | Zhu Bingbing, Deng Jianghua, Chen Jingjing, Mu Xiaoling. Interleukin-8 receptor enhances the migration and adhesion of umbilical cord mesenchymal stem cells to injured endothelium [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1045-1050. |
[10] | Fang Xiaolei, Leng Jun, Zhang Chen, Liu Huimin, Guo Wen. Systematic evaluation of different therapeutic effects of mesenchymal stem cell transplantation in the treatment of ischemic stroke [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1085-1092. |
[11] | Guo Jia, Ding Qionghua, Liu Ze, Lü Siyi, Zhou Quancheng, Gao Yuhua, Bai Chunyu. Biological characteristics and immunoregulation of exosomes derived from mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1093-1101. |
[12] | Zhang Jinglin, Leng Min, Zhu Boheng, Wang Hong. Mechanism and application of stem cell-derived exosomes in promoting diabetic wound healing [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1113-1118. |
[13] | Huang Chuanjun, Zou Yu, Zhou Xiaoting, Zhu Yangqing, Qian Wei, Zhang Wei, Liu Xing. Transplantation of umbilical cord mesenchymal stem cells encapsulated in RADA16-BDNF hydrogel promotes neurological recovery in an intracerebral hemorrhage rat model [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 510-515. |
[14] | He Yunying, Li Lingjie, Zhang Shuqi, Li Yuzhou, Yang Sheng, Ji Ping. Method of constructing cell spheroids based on agarose and polyacrylic molds [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 553-559. |
[15] | He Guanyu, Xu Baoshan, Du Lilong, Zhang Tongxing, Huo Zhenxin, Shen Li. Biomimetic orientated microchannel annulus fibrosus scaffold constructed by silk fibroin [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 560-566. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||