Chinese Journal of Tissue Engineering Research ›› 2016, Vol. 20 ›› Issue (28): 4250-4256.doi: 10.3969/j.issn.2095-4344.2016.28.021
Yang Yun
Revised:
2016-06-08
Online:
2016-07-01
Published:
2016-07-01
About author:
Yang Yun, Associate chief physician, Department of Gynecology and Obstetrics, Binhai Hospital, General Hospital of Tianjin Medical University, Tianjin 300480, China
CLC Number:
Yang Yun. Endometriosis and stem cell theory[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(28): 4250-4256.
2.1 子宫内膜异位症病因学的经典学说 2.1.1 子宫内膜种植学说 “经血逆流”学说首次以“巧克力囊肿”命名卵巢子宫内膜异位症。此学说认为,子宫内膜细胞周期性的随经血逆行进入腹腔可能是子宫内膜异位症的发病基础。此学说虽被绝大多数学者接受,但它不能解释盆腔外子宫内膜异位症的发生。大多数学者倾向于种植学说,即异位病灶处的内膜组织细胞来源于在位内膜。组织细胞迁移是子宫内膜异位症异位病灶病理形成的前提条件。调节细胞迁移可能影响内膜组织细胞在异位的种植和存活,影响子宫内膜异位症异位病灶的形成。子宫内膜各细胞组分的迁移和子宫内膜异位症发生发展具有一定的相关性,但是其分子机制目前尚无定论。郭晓燕[9]的研究显示,通过调节细胞迁移抑制子宫内膜异位症病灶的形成和发展,从而对子宫内膜异位症进行预防和治疗。而其另外一个探索方向就是针对异位内膜病灶进行特异性处理,抑制子宫内膜异位症的发生发展,但不影响其对在位内膜的作用。 郎景和教授[10]提出了子宫内膜异位症患者“在位内膜决定论”,即患者在位内膜的某些特性决定了经血逆流或经血中的内膜碎片能否在“异地”黏附、侵袭、生长,在位内膜是子宫内膜异位症发生的决定因素。但是在位子宫内膜影响子宫内膜异位症发生与发展的作用途径目前尚缺乏深入研究。 2.1.2 体腔上皮化生学说 化生学说认为在胚胎发育过程中,腹膜、盆腔、苗勒氏管、卵巢表面的生殖上皮等都是由胚胎中具有高度化生潜能的体腔上皮细胞分化而来,同时异位的内膜组织也是由体腔上皮化生而来,已有病理学研究为该学说提供了证据。此学说在解释盆腔腹膜型子宫内膜异位症的发病时有一定的说服力,但该学说仍难以解释异位病灶形成后是如何维持及发展的。 2.1.3 免疫因素学说 该学说认为,免疫反应异常可导致内膜损害并维持其持续存在,提示子宫内膜异位症是一种自身免疫综合征。研究发现,子宫内膜异位症患者通常伴有局部及全身细胞或体液免疫细胞数量或功能异常、自身抗体产生、细胞因子含量或活性的改变等,子宫内膜异位症发生的免疫因素受到越来越多的重视。细胞免疫反应的减弱是异位内膜细胞得以种植的重要条件,子宫内膜异位症患者中可出现巨噬细胞活性增高、T淋巴细胞活性减低。但是,免疫因素是子宫内膜异位症发生的原因还是结果,目前仍无定论。 2.2 子宫内膜异位症病因学的干细胞起源学说 干细胞是一类存在于成体组织和器官中的未分化细胞,这些细胞保持有高度增殖、自我更新和分化潜能,可以推测子宫内膜细胞也可能是由相应的干细胞分化而来。 近年随着子宫内膜异位症病因学研究的不断深入,子宫内膜中存在干细胞且这些干细胞参与子宫内膜周期性活动的观点得以提出并陆续被验证,进而子宫内膜异位症干细胞学说逐渐得到认可。子宫内膜异位症病灶细胞呈现单克隆、多中心现象,提示病灶可能是由不同的干细胞分化而来的。最近有学者推测子宫内膜异位症的发病可能与子宫内膜中的干细胞相关,并推断子宫内膜异位症的发病机制:经血逆流、雌激素治疗等因素为不同来源的干细胞提供了适宜分化的局部微环境[11]。逆流经血可发生于大多数育龄妇女,子宫内膜中已证实存在干细胞,所以大部分妇女都会发生子宫内膜异位症,但由于遗传背景、免疫状况、生活条件的差异而导致病变程度轻重不一,且临床表现多样。以上干细胞理论为子宫内膜异位症的病因学研究带来了新的思路。 2.3 子宫内膜干细胞的提出 子宫内膜增生性疾病会导致子宫内膜增生,即子宫内膜异位症。早在2003年就有学者提出子宫内膜异位症是一种干细胞相关疾病的假说。目前子宫内膜异位症异位内膜种植的原因及机制仍难以确定,子宫内膜异位症的干/祖细胞学说已成为研究热点。有证据表明,子宫内膜干/祖细胞的位置和功能异常可能导致子宫内膜异位症。越来越多的研究通过寻找特异性干细胞标记物以分离并鉴定子宫内膜干/祖细胞,并提出了子宫内膜异位症的干细胞起源学说,认为子宫内膜干/祖细胞异常分化增殖可能导致子宫内膜异位症发生。子宫内膜异位症虽为多中心起源但其每一局部病灶细胞呈明显的单克隆性,而单克隆性是干/祖细胞的特征之一,这种现象提示子宫内膜异位症病灶可能是干/祖细胞来源的;由此可推测,子宫内膜中存在具有干/祖细胞特性的不同分化程度的细胞,这些细胞可影响子宫内膜异位症病灶的发生与发展。 女性的子宫内膜是一个动态组织,可进行周期性的再生、分化和脱落。产妇分娩后、人工流产内膜刮除术后和用雌激素替代治疗的绝经后妇女也可发生内膜再生。子宫内膜干/祖细胞对子宫内膜增生性疾病的发生起到关键性作用。干/祖细胞具有可塑性和横向分化潜能,人体内所有组织细胞均由干/祖细胞分化而来。有学者提出子宫内膜的再生是通过子宫内膜干/祖细胞所介导的。在正常情况下,干/祖细胞可有助于子宫内膜的生理修复,而子宫内膜干/祖细胞的异常分化可能是子宫内膜异位症的新机制。 新的证据表明,不同类型的成体干细胞与子宫内膜相关疾病如子宫内膜异位症有显著关系。Djokovic等[12]回顾了PubMed截止至2014年12月的相关研究,从体外实验、动物模型和人体组织等方面进行分析总结。一系列研究结果支持成体干细胞的靶向性,与激素治疗相结合,可能会更好的控制子宫内膜异位症。 2.4 子宫内膜干细胞的来源及鉴定 研究证明,子宫内膜干细胞包括胚胎残留来源干细胞或骨髓来源干细胞,这些干细胞介导子宫内膜的周期性再生并发挥重要作用[13]。 2.4.1 胚胎残留来源 子宫内干细胞可能来源于胚胎时期干细胞的残留。来自于胚胎发育时期中肾管的干细胞仍存在于子宫内膜中,在月经周期中增殖。有研究推断一小部分的胚胎来源的上皮和间充质干细胞残留于成人的子宫内膜中并在其周期性的组织重建中发挥作用,或通过逆流经血迁移至盆腔,形成子宫内膜异位症异位病灶。研究表明,人类胚胎干细胞可以被诱导形成子宫内膜上皮,参与子宫内膜异位症的发展。 2.4.2 骨髓来源 子宫内膜间质中可以检测到CD34阳性细胞,而CD34是骨髓来源干细胞的标记之一,推断骨髓来源的干细胞参与子宫内膜再生。研究证实,骨髓来源干细胞可能参与了多种组织的修复。有学者在骨髓移植后雌性小鼠的子宫内膜中发现了雄性供体来源的骨髓干细胞,虽然细胞量较小(< 0.01%),但这些细胞可以分化为上皮细胞,说明骨髓干细胞参与内膜增生。 但骨髓干细胞如何转化成为有功能的子宫内膜细胞以及其是否在生理条件下周期性迁移于子宫内膜,还是仅发生在骨髓移植后目前还不清楚。骨髓包含至少造血干细胞、间充质干细胞和内胚层祖细胞3种不同的干细胞,它们参与子宫内膜再生的机制尚不能确定。有研究表明,骨髓间充质干细胞在适宜条件下可以分化为子宫内膜上皮细胞,17β-雌二醇可促进骨髓间充质干细胞的分化,在子宫内膜异位症的发展过程中起关键作用。提示适宜的微环境和合适浓度的17β-雌二醇可以促进骨髓间充质干细胞向子宫内膜上皮细胞方向分化。 袁华等[14]通过构建子宫内膜异位症小鼠模型,观察骨髓间充质干细胞能否迁移至异位子宫内膜并向子宫内膜细胞分化,探讨骨髓间充质干细胞与子宫内膜异位症的关系。实验中分离雄性小鼠的骨髓间充质干细胞,用绿色荧光蛋白标记后自鼠尾静脉注入模型体内。采用激光共聚焦显微镜观察模型小鼠异位子宫内膜组织中绿色荧光蛋白的表达变化,用免疫荧光技术检测异位子宫内膜组织中绿色荧光蛋白与角蛋白或波形蛋白复合表达变化。其结果显示,骨髓间充质干细胞可迁移至异位子宫内膜组织中,但未发现其能分化为子宫内膜细胞。骨髓间充质干细胞与子宫内膜异位症的关系仍不确定。 子宫内膜具有特殊的再生性,存在与成体干细胞类似的骨髓间充质干细胞。一旦进入腹腔内,这些骨髓间充质干细胞就可以增殖、侵入,并分化成子宫内膜细胞,最终产生异位种植。异位组织的生存和增殖依赖于新生血管的形成,血管生成可促进骨髓间充质干细胞发挥重要作用。抑制新生血管的生成实际上是一个治疗子宫内膜异位症有前途的方法。此外,针对骨髓间充质干细胞的药物靶向治疗是修复子宫内膜异位症的有效方法,单独使用或结合激素治疗,可能会更好地控制子宫内膜异位症[15-20]。 2.4.3 分子表面标记物及信号转导通路 研究表明,子宫内膜干细胞与子宫内膜异位症的复发、侵袭、转移等表现均存在相关性,因此以子宫内膜干细胞为治疗靶点,阻止异位病灶的转移、种植不失为一种有效的方法,这为有效根治子宫内膜异位症提供了启示。因此探讨干细胞相关基因以及多能性标志物可能在子宫内膜异位症病因中发挥的作用成为目前的研究热点,确定子宫内膜干细胞的表面标志物有助于寻找异位病灶中的干细胞,从而开发出新的诊断标志物和治疗靶点[21-23]。 随着分子生物学方法的应用,证明了越来越多的基因和信号通路参与了干细胞的周期性调节。人们试图通过筛选一些常见的干细胞标志物来标记子宫内膜干细胞并探讨其生物学功能。研究表明,子宫内膜干细胞中CD29、CD44、CD73、CD90、CD105、CD140、CD146、胚胎干细胞关键蛋白(OCT-4、SOX2)等均呈阳性表达,但目前仍未确定子宫内膜干细胞标记物来作为其特异性标记。 Importin 13(IPO13)作为importin β家族的一个核质双向的转运受体蛋白,是角膜上皮干细胞的一个标记。龙行涛等[24]通过免疫组化、荧光定量PCR技术以及免疫印迹的方法检测IPO13在子宫内膜异位症和子宫内膜癌患者内膜中的表达。结果证实,IPO13在子宫内膜癌中及子宫内膜异位症中表达明显高于正常对照组,推测其高表达与子宫内膜癌及子宫内膜异位症发病密切相关。 Song等[25]分析了转录因子Sox2、Nanog和Oct4在生育年龄卵巢子宫内膜异位症妇女子宫内膜中的表达。结果显示,与正常对照组相比,卵巢子宫内膜异位症组患者在位内膜的Sox2 mRNA和蛋白表达明显升高,在卵巢子宫内膜异位症组,异位内膜的Sox2、Nanog mRNA和蛋白表达均显著高于在位内膜;另外异位内膜的Oct4 mRNA表达降低而Oct4蛋白表达升高,提示转录因子Sox2和Nanog在卵巢子宫内膜异位症中过表达,但其在卵巢子宫内膜异位症发病机制中的作用还有待进一步研究。 刘君等[26]研究表明Wnt/β-catenin信号通路是干细胞的重要通路之一,Wnt/β-catenin信号通路以其高度保守、结构复杂性而在多种肿瘤的发生发展中通过影响干细胞增殖周期发挥作用,同时Wnt/β-catenin信号通路参与调节子宫内膜干细胞,这将为子宫内膜异位症的发生、发展及治疗提供新的思路。建议今后应在子宫内膜干细胞及可调节其干细胞增殖分化的Wnt/β-catenin信号通路方面进行相关研究,寻找Wnt/β-catenin信号通路对子宫内膜异位症干细胞调节的靶点并开发可阻断这些靶点的基因药物,以探索出有效治疗子宫内膜异位症的新途径。 刘木彪等[27]观察核因子κB p65 siRNA对人子宫内膜异位种植于裸鼠的影响,以明确核因子κB在子宫内膜异位症发生发展的作用,为子宫内膜异位症治疗探索新的途径。结果证实,核因子κB参与调控子宫内膜异位症的发生发展,沉默核因子κB基因可以显著抑制异位病灶的种植和生长,核因子κB是通过调节血管内皮生长因子及细胞间黏附分子1等发挥作用的。 通过分析子宫内膜异位症相关的细胞信号通路,有助于发现子宫内膜干细胞的靶点从而进行靶向治疗,但是选择性杀伤子宫内膜干细胞且不抑制正常细胞仍是下一步的研究重点。"
[1] Ulukus M.Stem cells in endometrium and endometriosis.Womens Health (Lond Engl). 2015; 11(5):587-595. [2] Signorile PG, Baldi A.Endometriosis: new concepts in the pathogenesis.Int J Biochem Cell Biol. 2010;42(6): 778-780. [3] Revel A.Multitasking human endometrium: a review of endometrial biopsy as a diagnostic tool, therapeutic applications, and a source of adult stem cells.Obstet Gynecol Surv. 2009;64(4):249-257. [4] Sasson IE, Taylor HS.Stem cells and the pathogenesis of endometriosis.Ann N Y Acad Sci. 2008;1127: 106-115. [5] Yamashita YM, Fuller MT.Asymmetric centrosome behavior and the mechanisms of stem cell division.J Cell Biol. 2008;180(2):261-266. [6] Gargett CE, Schwab KE, Zillwood RM,et al. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium.Biol Reprod. 2009; 80(6):1136-1145. [7] Gargett CE.Uterine stem cells: what is the evidence?Hum Reprod Update. 2007;13(1):87-101. [8] Du H, Taylor HS.Contribution of bone marrow-derived stem cells to endometrium and endometriosis.Stem Cells. 2007;25(8):2082-2086. [9] 郭晓燕.子宫内膜异位症和细胞迁移[J].国际妇产科学杂志,2011,38(4):263-266. [10] 郎景和.子宫内膜异位症研究的新里程[J].中华妇产科杂志,2005,40(1):3-4. [11] Nikoo S, Ebtekar M, Jeddi-Tehrani M,et al.Menstrual blood-derived stromal stem cells from women with and without endometriosis reveal different phenotypic and functional characteristics.Mol Hum Reprod. 2014;20(9): 905-918. [12] Djokovic D, Calhaz-Jorge C.Somatic stem cells and their dysfunction in endometriosis.Front Surg. 2015; 1: 51. [13] Fraunhoffer NA, Meilerman Abuelafia A, Stella I, et al. Identification of germ cell-specific VASA and IFITM3 proteins in human ovarian endometriosis. J Ovarian Res. 2015;8(1):66. [14] 袁华,王沂峰,赵华,等.骨髓间充质干细胞对小鼠异位子宫内膜的作用观察[J].山东医药,2012,52(46):40-41. [15] Fettback PB, Pereira RM, Rocha AM,et al.Expression of stem cell-related genes in the endometrium and endometriotic lesions: a pilot study.Gynecol Endocrinol. 2016;32(1):82-86. [16] Zubrzycka A, Zubrzycki M, Janecka A,et al.New Horizons in the Etiopathogenesis and Non-Invasive Diagnosis of Endometriosis.Curr Mol Med. 2015;15(8): 697-713. [17] Hufnagel D, Li F, Cosar E, et al. The Role of Stem Cells in the Etiology and Pathophysiology of Endometriosis. Semin Reprod Med. 2015;33(5):333-340. [18] Masuda H, Maruyama T, Gargett CE,et al. Endometrial side population cells: potential adult stem/progenitor cells in endometrium.Biol Reprod. 2015;93(4):84. [19] Falomo ME, Ferroni L, Tocco I, et al. Immunomodulatory Role of Adipose-Derived Stem Cells on Equine Endometriosis.Biomed Res Int. 2015;2015:141485. [20] Siquara De Sousa AC, Capek S, Amrami KK, et al. Neural involvement in endometriosis: Review of anatomic distribution and mechanisms. Clin Anat. 2015; 28(8):1029-1038. [21] Chen Y, Li D, Zhang Z,et al.Effect of human umbilical cord mesenchymal stem cells transplantation on nerve fibers of a rat model of endometriosis.Int J Fertil Steril. 2015;9(1):71-80. [22] Zhao Y, Gong P, Chen Y, et al. Dual suppression of estrogenic and inflammatory activities for targeting of endometriosis. Sci Transl Med. 2015;7(271):271-279. [23] Dhesi AS, Morelli SS.Endometriosis: a role for stem cells.Womens Health (Lond Engl). 2015;11(1):35-49. [24] 龙行涛,王冬,田桂兰,等.Importin 13在子宫内膜异位症和子宫内膜癌中的表达及意义[J].中国癌症杂志,2012, 22(1): 10-14. [25] Song Y, Xiao L, Fu J,et al.Increased expression of the pluripotency markers sex-determining region Y-box 2 and Nanog homeobox in ovarian endometriosis.Reprod Biol Endocrinol. 2014;12:42. [26] 刘君,赵志梅,夏天,等.子宫内膜异位症干细胞与Wnt/ β-catenin信号通路[J].国际妇产科学杂志,2015,4(4): 409-412. [27] 刘木彪,何援利,钟洁.靶向NF-κB的siRNA抑制人子宫内膜异位种植的实验研究[J].广东医学,2009,30(7): 1024-1026. [28] Yang J, Huang F.Stem cell and endometriosis: new knowledge may be producing novel therapies.Int J Clin Exp Med. 2014;7(11):3853-3858. [29] Heidari-Keshel S, Rezaei-Tavirani M, Ai J,et al. Tissue-specific somatic stem-cell isolation and characterization from human endometriosis. Key roles in the initiation of endometrial proliferative disorders. Minerva Med. 2015;106(2):95-108. [30] Koippalli Gopalakrishnan Nair AR, Pandit H,et al. Warty N2,Endometriotic mesenchymal stem cells exhibit a distinct immune phenotype.Int Immunol. 2015; 27(4):195-204. [31] Yang XJ, Yang J, Liu Z, et al. Telocytes damage in endometriosis-affected rat oviduct and potential impact on fertility.J Cell Mol Med. 2015;19(2):452-462. [32] Greaves E, Grieve K, Horne AW,et al. Elevated peritoneal expression and estrogen regulation of nociceptive ion channels in endometriosis.J Clin Endocrinol Metab. 2014;99(9):E1738-1743. [33] Nikoo S, Ebtekar M, Jeddi-Tehrani M,et al. Menstrual blood-derived stromal stem cells from women with and without endometriosis reveal different phenotypic and functional characteristics.Mol Hum Reprod. 2014;20(9): 905-918. [34] Tan CW, Lee YH, Tan HH,et al. CD26/DPPIV down-regulation in endometrial stromal cell migration in endometriosis.Fertil Steril. 2014;102(1):167-177. [35] Li T, He H, Liu R,et al.Isolation and identification of epithelial and stromal stem cells from eutopic endometrium of women with endometriosis.Eur J Obstet Gynecol Reprod Biol. 2014;178:89-94. [36] Dracxler RC, Oh C, Kalmbach K, et al. Peripheral blood telomere content is greater in patients with endometriosis than in controls. Reprod Sci. 2014; 21(12):1465-1471. [37] Gargett CE, Schwab KE, Brosens JJ,et al. Potential role of endometrial stem/progenitor cells in the pathogenesis of early-onset endometriosis.Mol Hum Reprod. 2014;20(7):591-598. [38] Kobayashi H, Imanaka S, Nakamura H, et al. Understanding the role of epigenomic, genomic and genetic alterations in the development of endometriosis (review).Mol Med Rep. 2014;9(5): 1483-1505. [39] Sakr S, Naqvi H, Komm B,et al. Endometriosis impairs bone marrow-derived stem cell recruitment to the uterus whereas bazedoxifene treatment leads to endometriosis regression and improved uterine stem cell engraftment.Endocrinology. 2014;155(4):1489- 1497. [40] Kim NR, Lim S, Jeong J,et al. Peritoneal and nodal gliomatosis with endometriosis, accompanied with ovarian immature teratoma: a case study and literature review.Korean J Pathol. 2013;47(6):587-591. [41] Hsu CY, Hsieh TH, Tsai CF,et al. miRNA-199a-5p regulates VEGFA in endometrial mesenchymal stem cells and contributes to the pathogenesis of endometriosis.J Pathol. 2014;232(3):330-343. [42] Forte A, Cipollaro M, Galderisi U.Genetic, epigenetic and stem cell alterations in endometriosis: new insights and potential therapeutic perspectives. Clin Sci (Lond). 2014;126(2):123-138. [43] Pittatore G, Moggio A, Benedetto C,et al.Endometrial adult/progenitor stem cells: pathogenetic theory and new antiangiogenic approach for endometriosis therapy.Reprod Sci. 2014;21(3):296-304. [44] Valentijn AJ, Palial K, Al-Lamee H, et al. SSEA-1 isolates human endometrial basal glandular epithelial cells: phenotypic and functional characterization and implications in the pathogenesis of endometriosis.Hum Reprod. 2013;28(10):2695-2708. [45] Laganà AS, Sturlese E, Retto G,et al. Interplay between Misplaced Müllerian-Derived Stem Cells and Peritoneal Immune Dysregulation in the Pathogenesis of Endometriosis.Obstet Gynecol Int. 2013;2013: 527041. [46] Brosens I, Benagiano G.Is neonatal uterine bleeding involved in the pathogenesis of endometriosis as a source of stem cells. Fertil Steril. 2013;100(3): 622-623. [47] Hwang JH, Oh JJ, Wang T,et al. Identification of biomarkers for endometriosis in eutopic endometrial cells from patients with endometriosis using a proteomics approach.Mol Med Rep. 2013;8(1): 183-188. [48] Deane JA, Gualano RC, Gargett CE.Regenerating endometrium from stem/progenitor cells: is it abnormal in endometriosis, Asherman's syndrome and infertility. Curr Opin Obstet Gynecol. 2013;25(3):193-200. |
[1] | Pu Rui, Chen Ziyang, Yuan Lingyan. Characteristics and effects of exosomes from different cell sources in cardioprotection [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 1-. |
[2] | Lin Qingfan, Xie Yixin, Chen Wanqing, Ye Zhenzhong, Chen Youfang. Human placenta-derived mesenchymal stem cell conditioned medium can upregulate BeWo cell viability and zonula occludens expression under hypoxia [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 4970-4975. |
[3] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[4] | Zhang Xiumei, Zhai Yunkai, Zhao Jie, Zhao Meng. Research hotspots of organoid models in recent 10 years: a search in domestic and foreign databases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1249-1255. |
[5] | Hou Jingying, Yu Menglei, Guo Tianzhu, Long Huibao, Wu Hao. Hypoxia preconditioning promotes bone marrow mesenchymal stem cells survival and vascularization through the activation of HIF-1α/MALAT1/VEGFA pathway [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 985-990. |
[6] | Shi Yangyang, Qin Yingfei, Wu Fuling, He Xiao, Zhang Xuejing. Pretreatment of placental mesenchymal stem cells to prevent bronchiolitis in mice [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 991-995. |
[7] | Liang Xueqi, Guo Lijiao, Chen Hejie, Wu Jie, Sun Yaqi, Xing Zhikun, Zou Hailiang, Chen Xueling, Wu Xiangwei. Alveolar echinococcosis protoscolices inhibits the differentiation of bone marrow mesenchymal stem cells into fibroblasts [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 996-1001. |
[8] | Fan Quanbao, Luo Huina, Wang Bingyun, Chen Shengfeng, Cui Lianxu, Jiang Wenkang, Zhao Mingming, Wang Jingjing, Luo Dongzhang, Chen Zhisheng, Bai Yinshan, Liu Canying, Zhang Hui. Biological characteristics of canine adipose-derived mesenchymal stem cells cultured in hypoxia [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1002-1007. |
[9] | Geng Yao, Yin Zhiliang, Li Xingping, Xiao Dongqin, Hou Weiguang. Role of hsa-miRNA-223-3p in regulating osteogenic differentiation of human bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1008-1013. |
[10] | Lun Zhigang, Jin Jing, Wang Tianyan, Li Aimin. Effect of peroxiredoxin 6 on proliferation and differentiation of bone marrow mesenchymal stem cells into neural lineage in vitro [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1014-1018. |
[11] | Zhu Xuefen, Huang Cheng, Ding Jian, Dai Yongping, Liu Yuanbing, Le Lixiang, Wang Liangliang, Yang Jiandong. Mechanism of bone marrow mesenchymal stem cells differentiation into functional neurons induced by glial cell line derived neurotrophic factor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1019-1025. |
[12] | Duan Liyun, Cao Xiaocang. Human placenta mesenchymal stem cells-derived extracellular vesicles regulate collagen deposition in intestinal mucosa of mice with colitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1026-1031. |
[13] | Pei Lili, Sun Guicai, Wang Di. Salvianolic acid B inhibits oxidative damage of bone marrow mesenchymal stem cells and promotes differentiation into cardiomyocytes [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1032-1036. |
[14] | Guan Qian, Luan Zuo, Ye Dou, Yang Yinxiang, Wang Zhaoyan, Wang Qian, Yao Ruiqin. Morphological changes in human oligodendrocyte progenitor cells during passage [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1045-1049. |
[15] | Wang Zhengdong, Huang Na, Chen Jingxian, Zheng Zuobing, Hu Xinyu, Li Mei, Su Xiao, Su Xuesen, Yan Nan. Inhibitory effects of sodium butyrate on microglial activation and expression of inflammatory factors induced by fluorosis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1075-1080. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||