Chinese Journal of Tissue Engineering Research ›› 2016, Vol. 20 ›› Issue (23): 3407-3412.doi: 10.3969/j.issn.2095-4344.2016.23.009
Previous Articles Next Articles
Li Shu-na, Song Na-na
Received:
2016-05-01
Online:
2016-06-03
Published:
2016-06-03
Contact:
Li Shu-na, Department of Laboratory Medicine, Xiangya Medical College of Central South University, Changsha 410013, Hunan Province, China
About author:
Li Shu-na, Studying for master’s degree, Department of Laboratory Medicine, Xiangya Medical College of Central South University, Changsha 410013, Hunan Province, China
CLC Number:
Li Shu-na, Song Na-na . Bioinformatics analysis of differentially expressed oncogenes in liver cancer stem cells[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(23): 3407-3412.
2.1 总RNA的质量测定结果 经过紫外分光光度计检测发现,RAN的浓度约为0.45 mg/L,而A260 nm/280 nm的比值为1.93-2.01;提取的总RNA经电泳检测结果发现, 18 S以及28 S电泳条带较亮,较为清晰,电泳带较为完整,未发现有明显的降解。 2.2 芯片杂交实验的检出率以及结果 进行3次杂交实验后,其平均杂交的检出率为73.21%,这一结果充分说明了本次的杂交试验是成功的,其芯片杂交图如图1所示:荧光信号分布较为均匀,信号点饱满,并且背景较低,进一步证明了杂交实验室成功的。图1是Cy3标记扫描图与Cy5标记扫描图叠加后得到的一个伪图,探针的颜色呈现黄色,表示大多数基因在两组间的表达是一致的。将原始数据导入到软件Feature Extraction software 10.7中进行分析,其中有38 342个mRNA被发现,进一步分析后,筛选差异性表达基因1 236个(P < 0.05,fold change ≥2),其中上调和下调表达基因的数量分别为599和637个。这部分基因中有一部分与EMT差异表达有关。"
[1] 周衍亮,党军强,任涛,等.上调miR-200a表达对人肝癌细胞MHCC97中边缘群细胞干细胞特性的影响[J].现代肿瘤医学,2015,23(17):2410-2413. [2] 韩泽平,何金花,黎毓光,等.基于生物信息学方法预测hsa-miR-122在肝癌中的分子调控网络[J].生物医学工程与临床,2013,17(6):601-606. [3] 江建新,高珊,王敏,等.胰腺癌干细胞差异基因的表达及生物信息学分析[J].世界华人消化杂志,2013,21(13):1218-1225. [4] Mitra A, Satelli A, Xia X, et al. Cell-surface Vimentin: a mislocalized protein for isolating csVimentin(+) CD133(-) novel stem-like hepatocellular carcinoma cells expressing EMT markers. Int J Cancer. 2015; 137(2):491-496. [5] Chen D, Zheng XF, Jiao XL, et al. Transcriptional repressor snail and metastasis in hepatocellular carcinoma. Hepatogastroenterology. 2012; 59(117): 1359-1365. [6] Zheng LY, Zhou DX, Lu J, et al. Down-regulated expression of the protein- tyrosine phosphatase 1B(PTP1B) is associated with aggressive clinicopathopathologic features and poor prognosis in hepatocellular carcinoma. Biochem Biophys Res Commun. 2012;420(3):680-684. [7] 贾茜,高建,张小丽.HepG2、Hep3B细胞中肿瘤干细胞相关标志分子的表达[J].第三军医大学学报,2012,34(9): 852-856. [8] Kojima K, Takata A, Vadnais C, et al. MicroRNA122 is a key regulator of α-fetoprotein expression and influences the aggressiveness of hepatocellular carcinoma. Nat Commun. 2011;2:338-338. [9] 上官辉,谭淑燕,张积仁.肝癌易感性相关基因的文献计量学与生物信息学分析[J].中华肿瘤防治杂志,2015,22(4): 305-311. [10] Bae JH, Park SH, Yang JH, et al. Stem cell-like gene expression signature identified in ionizing radiation-treated cancer cells. Gene. 2015;572(2): 285-291. [11] Nio K, Yamashita T, Okada H, et al. Defeating EpCAM(+) liver cancer stem cells by targeting chromatin remodeling enzyme CHD4 in human hepatocellular carcinoma. J Hepatol. 2015;63(5): 1164-1172. [12] Zhong C, Wu JD, Fang MM, et al. Clinicopathological significance and prognostic value of the expression of the cancer stem cell marker CD133 in hepatocellular carcinoma: a meta-analysis. Tumour Biol. 2015;36(10): 7623-7630. [13] Ding M, Li J, Yu Y, et al. Integrated analysis of miRNA, gene, and pathway regulatory networks in hepatic cancer stem cells. J Transl Med. 2015;13:259. [14] Liu R, Shen Y, Nan K, et al. Association between expression of cancer stem cell markers and poor differentiation of hepatocellular carcinoma: a meta-analysis (PRISMA). Medicine (Baltimore). 2015; 94(31):e1306. [15] Zhu L, Zhang W, Wang J, et al. Evidence of CD90+CXCR4+ cells as circulating tumor stem cells in hepatocellular carcinoma. Tumour Biol. 2015;36(7): 5353-5360. [16] 郑景辉,袁肇凯,张敏州,等.差异蛋白基因生物信息学在冠心病血瘀证遗传相关验证中的应用[J].中国组织工程研究, 2014,18(51):8337-8345. [17] 郑建伟,利小平,董俊英,等.构建以RACK1为核心口腔鳞状细胞癌差异基因间相互作用的关系网路[J].中国组织工程研究,2015,19(18):2911-2916. [18] Itzel T, Scholz P, Maass T, et al. Translating bioinformatics in oncology: guilt-by-profiling analysis and identification of KIF18B and CDCA3 as novel driver genes in carcinogenesis. Bioinformatics. 2015; 31(2):216-224. [19] Song J, Li Y, An RF. Identification of early-onset preeclampsia-related genes and micrornas by bioinformatics approaches. Reprod Sci. 2015;22(8): 954-963. [20] Zhao Y, Zhang X, Zhao Y, et al. Identification of potential therapeutic target genes, key miRNAs and mechanisms in acute myeloid leukemia based on bioinformatics analysis. Med Oncol. 2015,32(5):152. [21] Jia Z, Ai X, Sun F, et al. Identification of new hub genes associated with bladder carcinoma via bioinformatics analysis. Tumor. 2015;101(1):117-122. [22] Luo X, Yu C, Fu C, et al. Identification of the differentially expressed genes associated with familial combined hyperlipidemia using bioinformatics analysis. Mol Med Rep. 2015;11(6):4032-4038. [23] Wei B, Wang L, Du C, et al. Identification of differentially expressed genes regulated by transcription factors in glioblastomas by bioinformatics analysis. Mol Med Rep. 2015;11(4):2548-2554. [24] Xu L, Zhang W, He X, et al. Functional characterization of cotton genes responsive to verticillium dahliae through bioinformatics and reverse genetics strategies. J Exp Bot. 2014;65(22):6679-6692. [25] Wen DY, Geng J, Li W, et al. A computational bioinformatics analysis of gene expression identifies candidate agents for prostate cancer. Andrologia. 2014; 46(6):625-632. [26] Hu Y, Hu Y, Liu D, et al. Screening and bioinformatics analysis of differentially expressed genes in hyperplastic scar. Nan Fang Yi Ke Da Xue Xue Bao. 2014;34(7):939-944. [27] Singh N, Srivastava S, Sharma A. Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach. Gene. 2016;575(2 Pt 2): 570-576. [28] Li J, Zhai X, Wang H, et al. Bioinformatics analysis of gene expression profiles in childhood B-precursor acute lymphoblastic leukemia. Hematology. 2015; 20(7):377-383. [29] Li C, Shen W, Shen S, et al. Gene expression patterns combined with bioinformatics analysis identify genes associated with cholangiocarcinoma. Comput Biol Chem. 2013;47:192-197. [30] He H, Mao L, Xu P, et al. Ossification of the posterior longitudinal ligament related genes identification using microarray gene expression profiling and bioinformatics analysis. Gene. 2014;533(2):515-519. [31] Lai FB, Liu WT, Jing YY, et al. Lipopolysaccharide supports maintaining the stemness of CD133+ hepatoma cells through activation of the NF-κB/HIF-1α pathway. Cancer Lett. 2016. [32] Ramesh V, Ganesan K. Integrative functional genomic delineation of the cascades of transcriptional changes involved in hepatocellular carcinoma progression. Int J Cancer. 2016. [33] Mebarki S, Désert R, Sulpice L, et al. De novo HAPLN1 expression hallmarks Wnt-induced stem cell and fibrogenic networks leading to aggressive human hepatocellular carcinomas. Oncotarget. 2016. [34] Haase G, Gavert N, Brabletz T, et al. The Wnt Target Gene L1 in Colon Cancer Invasion and Metastasis. Cancers (Basel). 2016. [35] Thanee M, Loilome W, Techasen A, et al. CD44 variant-dependent redox status regulation in liver fluke-associated cholangiocarcinoma: a target for CCA treatment. Cancer Sci. 2016. [36] Wang T, Xia L, Ma S, et al. Hepatocellular carcinoma: thyroid hormone promotes tumorigenicity through inducing cancer stem-like cell self-renewal. Sci Rep. 2016;6:25183. [37] Zhang J, Hou L, Wu X, et al. Inhibitory effect of genetically engineered mesenchymal stem cells with Apoptin on hepatoma cells in vitro and in vivo. Mol Cell Biochem. 2016;416(1-2):193-203. [38] Érsek B, Lupsa N, Pócza P, et al. Unique patterns of CD8+ T-cell-mediated organ damage in the Act-mOVA/ OT-I model of acute graft-versus-host disease. Cell Mol Life Sci. 2016. [39] Wu N, Zhang YL, Wang HT, et al. Overexpression of hepatocyte nuclear factor 4α in human mesenchymal stem cells suppresses hepatocellular carcinoma development through Wnt/β-catenin signaling pathway downregulation. Cancer Biol Ther. 2016;17(5):558-565. [40] Su YH, Huang WC, Huang TH, et al. Folate deficient tumor microenvironment promotes epithelial-to- mesenchymal transition and cancer stem-like phenotypes. Oncotarget. 2016. [41] Bissig-Choisat B, Kettlun-Leyton C, Legras XD, et al. Novel Patient-Derived Xenograft and Cell Line Models for Therapeutic Testing of Pediatric Liver Cancer. J Hepatol. 2016. [42] Kim PG, Canver MC, Rhee C, et al. Interferon-alpha signaling promotes embryonic HSC maturation. Blood. 2016. [43] Ribeiro KB, da Silva Zanetti J, Ribeiro-Silva A, et al. KRAS mutation associated with CD44/CD166 immunoex- pression as predictors of worse outcome in metastatic colon cancer. Cancer Biomark. 2016;16(4):513-521. [44] Zheng Z, Liu J, Yang Z, et al. MicroRNA-452 promotes stem-like cells of hepatocellular carcinoma by inhibiting sox7 involving wnt/β-catenin signaling pathway. Oncotarget. 2016. [45] Sur S, Pal D, Roy R, et al. Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice. Toxicol Appl Pharmacol. 2016;300:34-46. [46] Tang Y, Li Q, Meng F, et al. Therapeutic Potential of HGF-Expressing Human Umbilical Cord Mesenchymal Stem Cells in Mice with Acute Liver Failure. Int J Hepatol. 2016;2016:5452487. [47] Jia J, Shi Y, Yan B, et al. LGR5 expression is controled by IKKα in basal cell carcinoma through activating STAT3 signaling pathway. Oncotarget. 2016. [48] Sun X, Chuang JC, Kanchwala M, et al. Suppression of the SWI/SNF Component Arid1a Promotes Mammalian Regeneration. Cell Stem Cell. 2016;18(4): 456-466. [49] Radtke S, Haworth KG, Kiem HP. The frequency of multipotent CD133(+)CD45RA(-)CD34(+) hematopoietic stem cells is not increased in fetal liver compared with adult stem cell sources. Exp Hematol. 2016;44(6):502-507. [50] Freeman BT, Jung JP, Ogle BM. Single-cell RNA-seq reveals activation of unique gene groups as a consequence of stem cell-parenchymal cell fusion. Sci Rep. 2016;6:23270. [51] Hong SW, Hur W, Choi JE, et al. Role of ADAM17 in invasion and migration of CD133-expressing liver cancer stem cells after irradiation. Oncotarget. 2016. [52] Hanna A, Shevde LA. Hedgehog signaling: modulation of cancer properies and tumor mircroenvironment. Mol Cancer. 2016;15:24. [53] Nor B, Young ND, Korhonen PK, et al. Pipeline for the identification and classification of ion channels in parasitic flatworms. Parasit Vectors. 2016;9(1):155. [54] Yasuda K, Hirohashi Y, Kuroda T, et al. MAPK13 is preferentially expressed in gynecological cancer stem cells and has a role in the tumor-initiation. Biochem Biophys Res Commun. 2016;472(4):643-647. [55] Cheung PF, Cheung TT, Yip CW, et al. Hepatic cancer stem cell marker granulin-epithelin precursor and β-catenin expression associate with recurrence in hepatocellular carcinoma. Oncotarget. 2016. [56] Chen J, Rajasekaran M, Xia H, et al. The microtubule-associated protein PRC1 promotes early recurrence of hepatocellular carcinoma in association with the Wnt/β-catenin signalling pathway. Gut. 2016. [57] Chen W, Zhang YW, Li Y, et al. Constitutive expression of Wnt/β?catenin target genes promotes proliferation and invasion of liver cancer stem cells. Mol Med Rep. 2016;13(4):3466-3474. [58] Ghosheh N, Olsson B, Edsbagge J, et al. Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines. Stem Cells Int. 2016;2016:8648356. |
[1] | Pu Rui, Chen Ziyang, Yuan Lingyan. Characteristics and effects of exosomes from different cell sources in cardioprotection [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 1-. |
[2] | Lin Qingfan, Xie Yixin, Chen Wanqing, Ye Zhenzhong, Chen Youfang. Human placenta-derived mesenchymal stem cell conditioned medium can upregulate BeWo cell viability and zonula occludens expression under hypoxia [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 4970-4975. |
[3] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[4] | Zhang Xiumei, Zhai Yunkai, Zhao Jie, Zhao Meng. Research hotspots of organoid models in recent 10 years: a search in domestic and foreign databases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1249-1255. |
[5] | Hou Jingying, Yu Menglei, Guo Tianzhu, Long Huibao, Wu Hao. Hypoxia preconditioning promotes bone marrow mesenchymal stem cells survival and vascularization through the activation of HIF-1α/MALAT1/VEGFA pathway [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 985-990. |
[6] | Shi Yangyang, Qin Yingfei, Wu Fuling, He Xiao, Zhang Xuejing. Pretreatment of placental mesenchymal stem cells to prevent bronchiolitis in mice [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 991-995. |
[7] | Liang Xueqi, Guo Lijiao, Chen Hejie, Wu Jie, Sun Yaqi, Xing Zhikun, Zou Hailiang, Chen Xueling, Wu Xiangwei. Alveolar echinococcosis protoscolices inhibits the differentiation of bone marrow mesenchymal stem cells into fibroblasts [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 996-1001. |
[8] | Fan Quanbao, Luo Huina, Wang Bingyun, Chen Shengfeng, Cui Lianxu, Jiang Wenkang, Zhao Mingming, Wang Jingjing, Luo Dongzhang, Chen Zhisheng, Bai Yinshan, Liu Canying, Zhang Hui. Biological characteristics of canine adipose-derived mesenchymal stem cells cultured in hypoxia [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1002-1007. |
[9] | Geng Yao, Yin Zhiliang, Li Xingping, Xiao Dongqin, Hou Weiguang. Role of hsa-miRNA-223-3p in regulating osteogenic differentiation of human bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1008-1013. |
[10] | Lun Zhigang, Jin Jing, Wang Tianyan, Li Aimin. Effect of peroxiredoxin 6 on proliferation and differentiation of bone marrow mesenchymal stem cells into neural lineage in vitro [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1014-1018. |
[11] | Zhu Xuefen, Huang Cheng, Ding Jian, Dai Yongping, Liu Yuanbing, Le Lixiang, Wang Liangliang, Yang Jiandong. Mechanism of bone marrow mesenchymal stem cells differentiation into functional neurons induced by glial cell line derived neurotrophic factor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1019-1025. |
[12] | Duan Liyun, Cao Xiaocang. Human placenta mesenchymal stem cells-derived extracellular vesicles regulate collagen deposition in intestinal mucosa of mice with colitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1026-1031. |
[13] | Pei Lili, Sun Guicai, Wang Di. Salvianolic acid B inhibits oxidative damage of bone marrow mesenchymal stem cells and promotes differentiation into cardiomyocytes [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1032-1036. |
[14] | Guan Qian, Luan Zuo, Ye Dou, Yang Yinxiang, Wang Zhaoyan, Wang Qian, Yao Ruiqin. Morphological changes in human oligodendrocyte progenitor cells during passage [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1045-1049. |
[15] | Wang Zhengdong, Huang Na, Chen Jingxian, Zheng Zuobing, Hu Xinyu, Li Mei, Su Xiao, Su Xuesen, Yan Nan. Inhibitory effects of sodium butyrate on microglial activation and expression of inflammatory factors induced by fluorosis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1075-1080. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||