Chinese Journal of Tissue Engineering Research ›› 2026, Vol. 30 ›› Issue (4): 824-831.doi: 10.12307/2025.994
Previous Articles Next Articles
Yan Chengbo1, Luo Qiuchi1, Fan Jiabing2, Gu Yeting1, Deng Qian1, Zhang Junmei1
Received:
2024-10-14
Accepted:
2024-12-25
Online:
2026-02-08
Published:
2025-05-15
Contact:
Zhang Junmei, Chief physician, Professor, Master’s supervisor, School of Stomatology, Guizhou Medical University, Guiyang 550001, Guizhou Province, China
About author:
Yan Chengbo, Master candidate, Physician, School of Stomatology, Guizhou Medical University, Guiyang 550001, Guizhou Province, China
Supported by:
CLC Number:
Yan Chengbo, Luo Qiuchi, Fan Jiabing, Gu Yeting, Deng Qian, Zhang Junmei. Effect of type 2 diabetes mellitus on orthodontic tooth movement and bone microstructure parameters on the tension side in rats[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 824-831.
2.3 各组大鼠一般状态 对照组和正畸组大鼠活动正常,毛发柔软有光泽,垫料干燥;糖尿病组和糖尿病正畸组大鼠精神萎靡,垫料潮湿,毛色发黄,有刺激性气味,饮食及饮水量增加。 2.4 各组大鼠第一磨牙近中移动距离比较 4组大鼠正畸第3,7,14,21天的牙移动距离比较差异有显著性意义(P < 0.05),见表3,图4。正畸第3天,正畸组、糖尿病正畸组牙移动距离均大于糖尿病组(P < 0.05);正畸第7天,正畸组、糖尿病正畸组牙移动距离均大于对照组(P < 0.01);正畸第14天,正畸组、糖尿病正畸组牙移动距离均大于对照组(P < 0.05或P < 0.01),糖尿病正畸组牙移动距离大于糖尿病组(P < 0.05);正畸第21天,糖尿病正畸组牙移动距离大于对照组、糖尿病组(P < 0.05或P < 0.01),正畸组牙移动距离均大于糖尿病组(P < 0.05)。 2.5 各组大鼠张力侧骨微结构参数比较 正畸不同时间各组大鼠张力侧牙根表面Micro-CT图像,见图5。 2.5.1 张力侧牙槽骨骨密度 正畸第3天,4组间张力侧牙槽骨骨密度比较差异无显著性意义(P > 0.05);正畸第"
2.5.2 张力侧牙槽骨骨体积分数 正畸第3天,4组间张力侧牙槽骨骨体积分数比较差异无显著性意义(P > 0.05);正畸第7,14,21天,4组间张力侧牙槽骨骨体积分数比较差异显著(P < 0.05),见表5,图7。正畸第7天,糖尿病正畸组张力侧牙槽骨骨体积分数低于对照组、正畸组(P < 0.05或P < 0.01);正畸第14天,糖尿病组、糖尿病正畸组张力侧牙槽骨骨体积分数低于对照组(P < 0.05或P < 0.01);正畸第21天,糖尿病组骨体积分数高于对照组、糖尿病正畸组(P < 0.05)。 2.5.3 张力侧牙槽骨骨小梁厚度 正畸第7,21天,4组间张力侧牙槽骨骨小梁厚度比较差异无显著性意义(P > 0.05);正畸第3,14天,4组间张力侧牙槽骨骨小梁厚度比较差异有显著性意义(P < 0.05),见表6,图8。 正畸第3天,糖尿病正畸组张力侧牙槽骨骨小梁厚度低于对照组、正畸组(P < 0.05或P < 0.01);正畸第14天,"
[1] 中华医学会糖尿病学分会.中国2型糖尿病防治指南(2020年版)(上)[J].中国实用内科杂志,2021,41(8):668-695. [2] 周瑞雯,郭华,任忠英.青少年2型糖尿病国外研究进展的相关解读[J].糖尿病新世界,2023,26(7):194-198. [3] PABISCH S, AKABANE C, WAGERMAIER W, et al. The nanostructure of murine alveolar bone and its changes due to type 2 diabetes. J Struct Biol. 2016;196(2): 223-231. [4] ZHU L, ZHOU C, CHEN S, et al. Osteoporosis and Alveolar Bone Health in Periodontitis Niche: A Predisposing Factors-Centered Review. Cells. 2022;11(21): 3380. [5] ZHAO P, XU A, LEUNG WK. Obesity, Bone Loss, and Periodontitis: The Interlink. Biomolecules. 2022;12(7):865. [6] MAYTA-MAYORGA M, GUERRA-RODRÍGUEZ V, BERNABE-ORTIZ A. Association between type 2 diabetes and periodontitis: a population-based study in the North Peru. Wellcome Open Res. 2024;9:562. [7] 关禹哲,蒋玉坤,吴祖平,等.机械敏感离子通道Piezo1在糖尿病大鼠牙移动过程中的表达和功能研究[J]. 口腔医学,2022,42(6):487-493. [8] 孙慧颖,王东旭,张莹.糖尿病患者牙周病的正畸治疗对牙周状况及血糖水平的影响[J].糖尿病新世界,2019,22(9):183-184. [9] SUN J, DU J, FENG W, et al. Histological evidence that metformin reverses the adverse effects of diabetes on orthodontic tooth movement in rats. J Mol Histol. 2016;48(2):73-81. [10] SANTAMARIA-JR M, BAGNE L, ZANIBONI E, et al. Diabetes mellitus and periodontitis: Inflammatory response in orthodontic tooth movement. Orthod Craniofac Res. 2019;23(1):27-34. [11] ARITA K, HOTOKEZAKA H, HASHIMOTO M, et al. Effects of diabetes on tooth movement and root resorption after orthodontic force application in rats. Orthod Craniofac Res. 2016;19(2):83-92. [12] PLUT A, SPROGAR Š, DREVENŠEK G, et al. Bone remodeling during orthodontic tooth movement in rats with type 2 diabetes. Am J Orthod Dentofacial Orthop. 2015;148(6):1017-1025. [13] JEON HH, TEIXEIRA H, TSAI A. Mechanistic Insight into Orthodontic Tooth Movement Based on Animal Studies: A Critical Review. J Clin Med. 2021; 10(8):1733. [14] DING X, LAI L, JIA Y, et al. Effects of chronic fluorosis on the expression of VEGF/PI3K/AKT/eNOS in the gingival tissue of rats with orthodontic tooth movement. Exp Ther Med. 2024;27(3):121. [15] LI Y, ZHAN Q, BAO M, et al. Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade. Int J Oral Sci. 2021;13(1):20. [16] GUO X, SHEN Y, DU T, et al. Elevations of N-Terminal Mid-Fragment of Osteocalcin and Cystatin C Levels are Associated with Disorders of Glycolipid Metabolism and Abnormal Bone Metabolism in Patients with Type 2 Diabetes Mellitus Complicated with Osteoporosis. J Physiol Investig. 2024;67(6):335-343. [17] 冯智敏,吴永生,闫桂艳.糖尿病大鼠正畸牙齿移动及组织学变化[J].现代口腔医学杂志,2007,21(2):188-191. [18] LI M, SUN H, CHEN H, et al. Type 2 diabetes and bone mineral density: A meta-analysis and systematic review. Medicine (Baltimore). 2024;103(45):e40468. [19] ZHAO Q, LI Y, ZHANG Q, et al. Association between serum insulin-like growth factor-1 and bone mineral density in patients with type 2 diabetes. Front Endocrinol (Lausanne). 2024;15:1457050. [20] MURRAY CE, COLEMAN CM. Impact of Diabetes Mellitus on Bone Health. Int J Mol Sci. 2019;20(19):4873. [21] PSACHNA S, CHONDROGIANNI ME, STATHOPOULOS K, et al. The effect of antidiabetic drugs on bone metabolism: a concise review. Endocrine. 2024. doi: 10.1007/s12020-024-04070-1.. [22] 郭莉莉,张莹,潘多.胰岛素控制对糖尿病大鼠正畸牙齿移动的影响[J].糖尿病新世界,2019,22(9):23-24. [23] ABBASSY MA, WATARI I, BAKRY AS, et al. Calcitonin and vitamin D3 have high therapeutic potential for improving diabetic mandibular growth. Int J Oral Sci. 2016;8:39-44. [24] MADDALONI E, NGUYEN M, SHAH SH, et al. Osteoprotegerin, Osteopontin, and Osteocalcin Are Associated With Cardiovascular Events in Type 2 Diabetes: Insights From EXSCEL. Diabetes Care.2024:dc241455. doi:10.2337/dc24-1455. [25] ELAMIR Y, GIANAKOS AL, LANE JM, et al. The Effects of Diabetes and Diabetic Medications on Bone Health. J Orthop Trauma. 2020;34(3):e102-e108. [26] HUANG D, HE Q, PAN J, et al. Systemic immune-inflammatory index predicts fragility fracture risk in postmenopausal anemic females with type 2 diabetes mellitus: evidence from a longitudinal cohort study. BMC Endocr Disord. 2024; 24(1):256. [27] SHEU A, GREENFIELD JR, WHITE CP, et al. Assessment and treatment of osteoporosis and fractures in type 2 diabetes. Trends Endocrinol Metab. 2022; 33(5):333-344. [28] ZHANG YS, ZHENG YD, YUAN Y, et al. Effects of Anti-Diabetic Drugs on Fracture Risk: A Systematic Review and Network Meta-Analysis. Front Endocrinol (Lausanne). 2021;12:735824. [29] MARIN C, TUTS J, LUYTEN FP, et al. Impaired soft and hard callus formation during fracture healing in diet-induced obese mice as revealed by 3D contrast-enhanced computed tomography imaging. Bone. 2021;150:116008. [30] SÁBADO-BUNDÓ H, SÁNCHEZ-GARCÉS MÁ, GAY-ESCODA C. Bone regeneration in diabetic patients. A systematic review. Med Oral Patol Oral Cir Bucal. 2019; 24(4):e425-e432. [31] LUONG A, TAWFIK AN, ISLAMOGLU H, et al. Periodontitis and diabetes mellitus co-morbidity: A molecular dialogue. J Oral Biosci. 2021;63(4):360-369. [32] LI Y, HUANG Z, PAN S, et al. Resveratrol Alleviates Diabetic Periodontitis-Induced Alveolar Osteocyte Ferroptosis Possibly via Regulation of SLC7A11/GPX4. Nutrients. 2023;15(9):2115. [33] ZHAO P, YUE Z, NIE L, et al. Hyperglycaemia-associated macrophage pyroptosis accelerates periodontal inflamm-aging. J Clin Periodontol. 2021;48(10):1379-1392. [34] CAI F, LIU Y, LIU K, et al. Diabetes mellitus impairs bone regeneration and biomechanics. J Orthop Surg Res. 2023;18(1):169. [35] BRAGA SM, TADDEI SR, ANDRADE JR I, et al. Effect of diabetes on orthodontic tooth movement in a mouse model. Eur J Oral Sci. 2011;119:7-14. [36] LI X, ZHANG L, WANG N, et al. Periodontal ligament remodeling and alveolar bone resorption during orthodontic tooth movement in rats with diabetes. Diabetes Technol Ther. 2010;12:65-73. [37] VILLARINO ME, LEWICKI M, UBIOS AM. Bone response to orthodontic forces in diabetic Wistar rats. Am J Orthod Dentofacial Orthop. 2011;139(4 Suppl):S76-82. [38] FERREIRA CL, DA ROCHA VC, DA SILVA URSI WJ, et al. Periodontal response to orthodontic tooth movement in diabetes-induced rats with or without periodontal disease. J Periodontol. 2018;89(3):341-350. [39] CHAPPLE IL, GENCO R; Working group 2 of the joint EFP/AAP workshop. Diabetes and periodontal diseases: consensus report of the joint EFP/AAP workshop on periodontitis and systemic diseases. J Periodontol. 2013;84(4 Suppl):S106-S112. [40] ZHANG L, LI X, BI LJ. Alterations of collagen-I, MMP-1 and TIMP-1 in the periodontal ligament of diabetic rats under mechanical stress. J Periodontal Res. 2011;46(4):448-455. |
[1] | Chen Yixian, Chen Chen, Lu Liheng, Tang Jinpeng, Yu Xiaowei. Triptolide in the treatment of osteoarthritis: network pharmacology analysis and animal model validation [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 805-815. |
[2] | Xu Shencong, Fang Zifei, Ji Mingyi, Xu Chengrui, Li Binhong, Cao Jiayu, Xu Junfeng. Application of Onlay bone grafts from mandibular lateral oblique line in implant restoration of bone defects in upper anterior teeth [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 841-848. |
[3] | Ma Hong, Ding Xueling, Wang Qi, Lyu Hui, Asya Albusm, Cheng Xinyi, Ma Xiang. Expression and significance of tumor necrosis factor alpha, nuclear factor kappaB and ionized calcium binding adaptor molecule-1 in the hippocampus of mice with aortic dissection [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 858-863. |
[4] | Zou Rongji, Yu Fangfang, Wang Maolin, Jia Zhuopeng. Triptolide inhibits ferroptosis and improves cerebral ischemia-reperfusion injury in a rat model of cerebral artery occlusion/reperfusion [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 873-881. |
[5] | Chen Xiaoqing, Bian Luyao, Lu Xingyu, Yang Tao, Li Xiang Hai. Thread embedding pretreatment at Xinshu (BL 15) improves cardiac function of acute myocardial ischemia rats [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 882-891. |
[6] | Wang Mingqi, Feng Shiya, Han Yinhe, Yu Pengxin, Guo Lina, Jia Zixuan, Wang Xiuli. Construction and evaluation of a neuralized intestinal mucosal tissue engineering model in vitro [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 892-900. |
[7] | Wang Jie, Huang Rui, Zhang Ye, Shou Zhaoxi, Yao Jie, Liu Chenxi, Liao Jian. Role and mechanism of probiotics in peri-implantitis [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 901-907. |
[8] | Yang Xiao, Bai Yuehui, Zhao Tiantian, Wang Donghao, Zhao Chen, Yuan Shuo. Cartilage degeneration in temporomandibular joint osteoarthritis: mechanisms and regenerative challenges [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 926-935. |
[9] | Yu Shiyu, Yu Sutong, Xu Yang, Zhen Xiangyan, Han Fengxuan. Advances in research and application of tissue engineering therapeutic strategies in oral submucous fibrosis [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 936-948. |
[10] | Jin Zhiyong, Wang Yufeng, Zhao Binjie, Xiong Minquan, Yan Li. Effects of inter-limb asymmetry on athletic performance from the perspective of bilateral limb control strategy [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 949-963. |
[11] | Rong Xiangbin, , Zheng Haibo, Mo Xueshen, Hou Kun, Zeng Ping, . Plasma metabolites, immune cells, and hip osteoarthritis: causal inference based on GWAS data from European populations [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 1028-1035. |
[12] | Fang Yuan, Qian Zhiyong, He Yuanhada, Wang Haiyan, Sha Lirong, Li Xiaohe, Liu Jing, He Yachao, Zhang Kai, Temribagen. Mechanism of Mongolian medicine Echinops sphaerocephalus L. in proliferation and angiogenesis of vascular endothelial cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7519-7528. |
[13] | Li Chen, Liu Ye, Ni Xindi, Zhang Yuang. Simulation analysis of real-time continuous stiffness in muscle fibers and tendons of the triceps surae during multi-joint movement [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7529-7536. |
[14] | Yang Bo, Pan Xinfang, Chang Liuhui, Ni Yong. Correlation of echocardiographic parameters with disability at 3 months after acute ischemic stroke [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7544-7551. |
[15] | Liu Xuan, Ding Yuqing, Xia Ruohan, Wang Xianwang, Hu Shujuan. Exercise prevention and treatment of insulin resistance: role and molecular mechanism of Keap1/nuclear factor erythroid2-related factor 2 signaling pathway [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(35): 7578-7588. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 22
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 50
|
|
|||||||||||||||||||||||||||||||||||||||||||||