Chinese Journal of Tissue Engineering Research ›› 2025, Vol. 29 ›› Issue (25): 5362-5373.doi: 10.12307/2025.511
Previous Articles Next Articles
Wang Shuang, Han Yu, Yuan Min, Cao Jimin, Sun Teng
Received:
2024-04-03
Accepted:
2024-05-23
Online:
2025-09-08
Published:
2024-12-25
Contact:
Sun Teng, MD, Associate professor, Master’s supervisor, Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
About author:
Wang Shuang, Master candidate, Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
Supported by:
2.1 实验动物数量分析 实验选用C57BL/6J小鼠54只。①按照随机数字表法随机将12只小鼠分为2组:假手术组和横向主动脉缩窄手术组,每组6只,均计入统计分析。②按照随机数字表法随机将18只小鼠分为2组:circ-CHACR过表达组和阴性对照组,每组9只。circ-CHACR过表达组和阴性对照组分别造模成功9只和8只计入统计分析。③按照随机数字表法随机将24只小鼠分为4组:假手术组、横向主动脉缩窄手术组、circ-CHACR过表达+横向主动脉缩窄手术组、circ-CHACR阴性对照+横向主动脉缩窄手术组,每组6只。假手术组和横向主动脉缩窄手术组造模成功6只,circ-CHACR过表达+横向主动脉缩窄手术组和circ-CHACR阴性对照+横向主动脉缩窄手术组造模成功5只,计入统计分析。 2.2 深度测序分析压力超负荷型心肌肥大中环状RNA表达丰度 C57BL/6J小鼠进行横向主动脉缩窄手术,假手术组作为阴性对照,然后进行环状RNA深度测序,结果显示,小鼠心脏中共检测到826条环状RNA,相较于阴性对照组,心肌肥大模型中表达水平上调倍数大于2的环状RNA 198条,上调倍数大于2且小于10的环状RNA 185条,上调倍数大于10的环状RNA 13条,下调倍数大于2的环状RNA 119条,下调倍数大于2且小于10的环状RNA 96条,下调倍数大于10的环状RNA 23条。为了寻找压力超负荷型心肌肥大的抑制因子,对表达水平下调倍数大于10的23条环状RNA进行进一步分析和筛选,最终确定物种间保守程度高且表达差异显著的环状RNA mm9_circ_000673作为研究对象,并将其命名为心肌肥大相关的环状 RNA——circ-CHACR,见图1。"
2.4 在体内和体外心肌肥大模型中,circ-CHACR的表达水平均显著降低 横向主动脉缩窄手术可用于生成压力超负荷的神经内分泌系统过度激活模型,导致循环血管紧张素Ⅱ和去甲肾上腺素水平升高,引起心肌肥大,进而被用于构建体内心肌肥大模型。在横向主动脉缩窄术后8周,取小鼠心脏组织,通过实时荧光定量PCR实验检测circ-CHACR的表达水平。结果显示,与假手术组相比,横向主动脉缩窄手术组小鼠心脏组织中circ-CHACR的表达水平明显降低(P < 0.01),见图3。通过血管紧张素Ⅱ诱导体外心肌细胞肥大模型,在H9c2细胞中加入1 μmol/L血管紧张素Ⅱ处理后,通过实时荧光定量PCR实验检测circ-CHACR的表达水平。结果显示,与对照组相比,血管紧张素Ⅱ处理24 h后,circ-CHACR的表达水平明显下调(P < 0.01),见图3。该结果表明在横向主动脉缩窄手术诱导的小鼠心肌肥大模型和血管紧张素Ⅱ诱导的心肌细胞肥大模型中,circ-CHACR的表达水平都显著下调。"
2.5 过表达circ-CHACR抑制横向主动脉缩窄手术诱导的小鼠心肌肥大 为了检测circ-CHACR在横向主动脉缩窄手术诱导的小鼠心肌肥大中的作用,通过心脏原位注射circ-CHACR过表达慢病毒或其阴性对照慢病毒,1周后采用实时荧光定量PCR检测circ-CHACR的表达水平。结果显示,与circ-CHACR阴性对照组相比,circ-CHACR过表达组的circ-CHACR表达水平明显升高(P < 0.05),表明circ-CHACR在体内被成功过表达,可用于后续实验研究,见图4。为了进一步检测circ-CHACR是否参与了横向主动脉缩窄手术诱导的心肌肥大,继续展开研究。小鼠心脏原位注射circ-CHACR过表达慢病毒或其阴性对照慢病毒1周后,施行横向主动脉缩窄手术,术后8周检测超声心动图,之后取材用于检测其他各项指标,实验示意图见图5A。结果显示,与假手术组相比,横向主动脉缩窄手术组的心脏体积明显增大,见图5B,心脏质量/胫骨长比值(P < 0.000 1)和肺质量/胫骨长比值(P < 0.05)升高,见图5C,D,苏木精-伊红染色显示心肌细胞表面积明显增大(P < 0.000 1),见图5E,F。此外,肥大标志基因心房利钠肽(P < 0.01)和脑钠肽(P < 0.001)的mRNA表达水平显著升高,见图5G,H。而当心脏原位注射circ-CHACR过表达慢病毒后,与阴性对照组相比,circ-CHACR过表达后显著抑制了横向主动脉缩窄手术诱导的心脏体积的增大,心脏质量/胫骨长比值(P < 0.05)和肺质量/胫骨长比值(P < 0.05)的升高,心肌细胞表面积的增大(P < 0.05),以及肥大标志基因心房利钠肽(P < 0.05)和脑钠肽(P < 0.05)表达水平的升高,见图5B-H。以上结果表明,过表达circ-CHACR显著抑制了横向主动脉缩窄手术诱导的小鼠心肌肥大。"
2.6 过表达circ-CHACR抑制横向主动脉缩窄手术诱导的心脏纤维化 为了检测circ-CHACR在横向主动脉缩窄手术诱导的小鼠心脏纤维化中的作用,通过天狼猩红染色检测心脏组织的纤维化面积。结果显示,与假手术组相比,横向主动脉缩窄手术组的纤维化程度加重,纤维化面积增多(P < 0.05)和纤维化相关基因Acta1的表达水平升高(P < 0.000 1)。而当心脏原位注射circ-CHACR过表达慢病毒后,与阴性对照组相比,circ-CHACR过表达后显著降低了心肌纤维化面积(P < 0.01)和Acta1的表达水平(P < 0.05),见图6A-C。以上结果表明,过表达circ-CHACR显著抑制了横向主动脉缩窄手术诱导的小鼠心脏纤维化。 2.7 过表达circ-CHACR改善横向主动脉缩窄手术诱导的心功能障碍 为了检测circ-CHACR对横向主动脉缩窄手术诱导的小鼠心功能的影响,通过超声心动图检测小鼠心脏功能。结果显示,与假手术组相比,横向主动脉缩窄手术组小鼠的射血分数和短轴缩短率显著降低(P < 0.000 1)。而当心脏原位注射circ-CHACR过表达慢病毒后,与阴性对照组相比,circ-CHACR过表达后显著抑制了射血分数 (P < 0.05)和短轴缩短率(P < 0.01)的降低,见图7A,B。以上结果表明,过表达circ-CHACR明显改善了横向主动脉缩窄手术诱导的心功能障碍。 2.8 过表达circ-CHACR抑制血管紧张素Ⅱ诱导的心肌细胞肥大 为了检测circ-CHACR在血管紧张素Ⅱ诱导的心肌细胞肥大模型中的作用,构建了circ-CHACR过表达的慢病毒。分别用circ-CHACR过表达慢病毒和其阴性对照慢病毒处理H9c2细胞72 h,通过实时荧光定量PCR实验检测circ-CHACR的表达水平。结果显示,与circ-CHACR阴性对照组相比,circ-CHACR的表达水平明显升高(P < 0.01),表明circ-CHACR在体外被成功过表达,可用于后续实验研究,见图8。"
为了进一步检测circ-CHACR是否参与了血管紧张素Ⅱ诱导的心肌细胞肥大机制调控,继续展开研究。结果显示,与对照组相比,血管紧张素Ⅱ处理后,心肌细胞的表面积明显增大(P < 0.01),见图9A,B,心房利钠肽(P < 0.05)和脑钠肽(P < 0.05)的mRNA表达水平显著升高,见图9C,D,蛋白质/DNA比值增大(P < 0.05),见图9E。而当加入circ-CHACR过表达慢病毒后,与阴性对照组相比,血管紧张素Ⅱ诱导的心肌细胞肥大效应被明显减轻,具体表现在:F-actin染色后细胞表面积减小(P < 0.05),心房利钠肽(P < 0.05)和脑钠肽(P < 0.05)等肥大标志基因的表达水平降低,蛋白质/DNA比值减小(P < 0.05),见图9A-E。以上结果表明,过表达circ-CHACR显著抑制了血管紧张素Ⅱ诱导的心肌细胞肥大。 2.9 过表达circ-CHACR减轻血管紧张素Ⅱ诱导的氧化应激 为了检测circ-CHACR在血管紧张素Ⅱ诱导的心肌细胞氧化应激中的作用,通过DCFH-DA荧光探针检测活性氧水平。结果显示,与对照组相比,血管紧张素Ⅱ处理后,活性氧水平显著升高(P < 0.05),而当加入circ-CHACR过表达慢病毒后,与阴性对照组相比,circ-CHACR过表达明显抑制了血管紧张素Ⅱ诱导的活性氧水平升高(P < 0.001),见图10A,B。由于氧化应激会引起线粒体功能障碍,线粒体膜发生去极化,膜电位降低,这是线粒体功能丧失的标志,所以通过JC-1荧光探针检测线粒体膜电位水平。JC-1是一种广泛用于检测线粒体膜电位的荧光探针,在健康细胞中,JC-1可以选择性地以JC-1聚集体的形式进入线粒体,并发出红色荧光。当线粒体膜电位降低时,JC-1弥散到细胞质中,形成JC-1单体,发出绿色荧光。因此,JC-1的红/绿荧光比表示线粒体膜电位的变化[32-33]。结果显示,与对照组相比,血管紧张素Ⅱ处理后增加了绿色荧光强度,但降低了红色荧光强度,表明细胞的线粒体膜电位显著降低(P < 0.01),而当加入circ-CHACR过表达慢病毒后,与阴性对照组相比,circ-CHACR过表达明显抑制了线粒体膜电位的降低(P < 0.05),见图10C,D。以上结果表明,过表达circ-CHACR显著减轻了血管紧张素Ⅱ诱导的氧化应激。"
[1] MARTIN TG, JUARROS MA, LEINWAND LA. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol. 2023;20(5):347-363. [2] MABLY JD, WANG DZ. Long non-coding RNAs in cardiac hypertrophy and heart failure: functions, mechanisms and clinical prospects. Nat Rev Cardiol. 2024;21(5):326-345. [3] ZHAO D, ZHONG G, LI J, et al. Targeting E3 Ubiquitin Ligase WWP1 Prevents Cardiac Hypertrophy Through Destabilizing DVL2 via Inhibition of K27-Linked Ubiquitination. Circulation. 2021;144(9): 694-711. [4] LIM GB. Piezo1 senses pressure overload and initiates cardiac hypertrophy. Nat Rev Cardiol. 2022;19(8):503. [5] CLUNTUN AA, BADOLIA R, LETTLOVA S, et al. The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure. Cell Metab. 2021;33(3):629-648.e10. [6] RITTERHOFF J, TIAN R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol. 2023;20(12):812-829. [7] HALLIWELL B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol. 2024;25(1):13-33. [8] PENG F, LIAO M, JIN W, et al. 2-APQC, a small-molecule activator of Sirtuin-3 (SIRT3), alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis. Signal Transduct Target Ther. 2024;9(1):133. [9] LEE YC, JOU YC, CHOU WC, et al. Ellagic acid protects against angiotensin II-induced hypertrophic responses through ROS-mediated MAPK pathway in H9c2 cells. Environ Toxicol. 2024;39(5):3253-3263. [10] CHENG T, LIU C, WANG Y, et al. A novel histone deacetylase inhibitor Se-SAHA attenuates isoproterenol-induced heart failure via antioxidative stress and autophagy inhibition. Toxicol Appl Pharmacol. 2024;487:116957. [11] BIN S, XINYI F, HUAN P, et al. SOX4 as a potential therapeutic target for pathological cardiac hypertrophy. Eur J Pharmacol. 2023;958:176071. [12] CHEN G, AN N, SHEN J, et al. Fibroblast growth factor 18 alleviates stress-induced pathological cardiac hypertrophy in male mice. Nat Commun. 2023;14(1):1235. [13] ZHENG X, SU F, LEI M, et al. The novel peptide athycaltide-1 attenuates Ang II-induced pathological myocardial hypertrophy by reducing ROS and inhibiting the activation of CaMKII and ERK1/2. Eur J Pharmacol. 2023;957:175969. [14] LIN X, FEI MZ, HUANG AX, et al. Breviscapine protects against pathological cardiac hypertrophy by targeting FOXO3a-mitofusin-1 mediated mitochondrial fusion. Free Radic Biol Med. 2024;212:477-492. [15] PALIOURA D, MELLIDIS K, IOANNIDOU-KABOURI K, et al. PPARδ activation improves cardiac mitochondrial homeostasis in desmin deficient mice but does not alleviate systolic dysfunction. J Mol Cell Cardiol. 2023;183:27-41. [16] ZHENG H, HUANG S, WEI G, et al. CircRNA Samd4 induces cardiac repair after myocardial infarction by blocking mitochondria-derived ROS output. Mol Ther. 2022;30(11):3477-3498. [17] LI X, FLYNN ER, DO CARMO JM, et al. Direct Cardiac Actions of Sodium-Glucose Cotransporter 2 Inhibition Improve Mitochondrial Function and Attenuate Oxidative Stress in Pressure Overload-Induced Heart Failure. Front Cardiovasc Med. 2022;9:859253. [18] ASHRAFIZADEH M, DAI J, TORABIAN P, et al. Circular RNAs in EMT-driven metastasis regulation: modulation of cancer cell plasticity, tumorigenesis and therapy resistance. Cell Mol Life Sci. 2024;81(1):214. [19] SANGER HL, KLOTZ G, RIESNER D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A. 1976;73(11):3852-3856. [20] CHEN C, YU H, HAN F, et al. Tumor-suppressive circRHOBTB3 is excreted out of cells via exosome to sustain colorectal cancer cell fitness. Mol Cancer. 2022;21(1):46. [21] XU L, ZHANG J, LI L, et al. A circular RNA produced by LRBA promotes cirrhotic mouse liver regeneration through facilitating the ubiquitination degradation of p27. Liver Int. 2023;43(7):1558-1576. [22] WANG S, ZHU X, HAO Y, et al. ALKBH5-mediated m6A modification of circFOXP1 promotes gastric cancer progression by regulating SOX4 expression and sponging miR-338-3p. Commun Biol. 2024;7(1):565. [23] LIANG Y, ZHAO B, SHEN Y, et al. Elucidating the Role of circTIAM1 in Guangling Large-Tailed Sheep Adipocyte Proliferation and Differentiation via the miR-485-3p/PLCB1 Pathway. Int J Mol Sci. 2024;25(9):4588. [24] YU F, FANG P, FANG Y, et al. Circ_0027791 contributes to the growth and immune evasion of hepatocellular carcinoma via the miR-496/programmed cell death ligand 1 axis in an m6A-dependent manner. Environ Toxicol. 2024;39(6):3721-3733. [25] SHAO M, YE S, CHEN Y, et al. Exosomes from hypoxic ADSCs ameliorate neuronal damage post spinal cord injury through circ-Wdfy3 delivery and inhibition of ferroptosis. Neurochem Int. 2024; 177:105759. [26] LIN J, WANG X, ZHAI S, et al. Hypoxia-induced exosomal circPDK1 promotes pancreatic cancer glycolysis via c-myc activation by modulating miR-628-3p/BPTF axis and degrading BIN1. J Hematol Oncol. 2022;15(1):128. [27] NIU D, WU Y, LIAN J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther. 2023;8(1):341. [28] NEUFELDT D, SCHMIDT A, MOHR E, et al. Circular RNA circZFPM2 regulates cardiomyocyte hypertrophy and survival. Basic Res Cardiol. 2024. doi: 10.1007/s00395-024-01048-y. [29] AUFIERO S, RECKMAN YJ, PINTO YM, et al. Circular RNAs open a new chapter in cardiovascular biology. Nat Rev Cardiol. 2019;16(8): 503-514. [30] FANG X, AO X, XIAO D, et al. Circular RNA-circPan3 attenuates cardiac hypertrophy via miR-320-3p/HSP20 axis. Cell Mol Biol Lett. 2024;29(1):3. [31] YUAN Q, SUN Y, YANG F, et al. CircRNA DICAR as a novel endogenous regulator for diabetic cardiomyopathy and diabetic pyroptosis of cardiomyocytes. Signal Transduct Target Ther. 2023;8(1):99. [32] FU YL, TAO L, PENG FH, et al. GJA1-20k attenuates Ang II-induced pathological cardiac hypertrophy by regulating gap junction formation and mitochondrial function. Acta Pharmacol Sin. 2021; 42(4):536-549. [33] CHEN J, DENG X, LIN T, et al. Ferrostatin-1 Reversed Chronic Intermittent Hypoxia-Induced Ferroptosis in Aortic Endothelial Cells via Reprogramming Mitochondrial Function. Nat Sci Sleep. 2024;16: 401-411. [34] ZHANG Y, DA Q, CAO S, et al. HINT1 (Histidine Triad Nucleotide-Binding Protein 1) Attenuates Cardiac Hypertrophy Via Suppressing HOXA5 (Homeobox A5) Expression. Circulation. 2021;144(8): 638-654. [35] RAI V, SHARMA P, AGRAWAL S, et al. Relevance of mouse models of cardiac fibrosis and hypertrophy in cardiac research. Mol Cell Biochem. 2017;424(1-2):123-145. [36] LIU Z, MA Z, ZHANG H, et al. Ferulic acid increases intestinal Lactobacillus and improves cardiac function in TAC mice. Biomed Pharmacother. 2019;120:109482. [37] CHENG Y, SHEN A, WU X, et al. Qingda granule attenuates angiotensin II-induced cardiac hypertrophy and apoptosis and modulates the PI3K/AKT pathway. Biomed Pharmacother. 2021;133:111022. [38] LI H, XU JD, FANG XH, et al. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc Res. 2020;116(7): 1323-1334. [39] LIM TB, ALIWARGA E, LUU TDA, et al. Targeting the highly abundant circular RNA circSlc8a1 in cardiomyocytes attenuates pressure overload induced hypertrophy. Cardiovasc Res. 2019;115(14):1998-2007. [40] WANG L, FENG J, FENG X, et al. Exercise-induced circular RNA circUtrn is required for cardiac physiological hypertrophy and prevents myocardial ischaemia-reperfusion injury. Cardiovasc Res. 2023;119(16):2638-2652. [41] WANG W, WANG L, YANG M, et al. Circ-SIRT1 inhibits cardiac hypertrophy via activating SIRT1 to promote autophagy. Cell Death Dis. 2021;12(11):1069. [42] ZHU Y, ZHENG C, ZHANG R, et al. Circ-Ddx60 contributes to the antihypertrophic memory of exercise hypertrophic preconditioning. J Adv Res. 2023;46:113-121. [43] WU N, XU J, DU WW, et al. YAP Circular RNA, circYap, Attenuates Cardiac Fibrosis via Binding with Tropomyosin-4 and Gamma-Actin Decreasing Actin Polymerization. Mol Ther. 2021;29(3):1138-1150. [44] LAVENNIAH A, LUU TDA, LI YP, et al. Engineered Circular RNA Sponges Act as miRNA Inhibitors to Attenuate Pressure Overload-Induced Cardiac Hypertrophy. Mol Ther. 2020;28(6):1506-1517. [45] PALMA FR, GANTNER BN, SAKIYAMA MJ, et al. ROS production by mitochondria: function or dysfunction? Oncogene. 2024;43(5): 295-303. [46] CINATO M, ANDERSSON L, MILJANOVIC A, et al. Role of Perilipins in Oxidative Stress-Implications for Cardiovascular Disease. Antioxidants (Basel). 2024;13(2):209. [47] XIE Y, GAO Y, GAO R, et al. The proteasome activator REGγ accelerates cardiac hypertrophy by declining PP2Acα-SOD2 pathway. Cell Death Differ. 2020;27(10):2952-2972. [48] MENDOZA A, PATEL P, ROBICHAUX D, et al. Inhibition of the mPTP and Lipid Peroxidation Is Additively Protective Against I/R Injury. Circ Res. 2024;134(10):1292-1305. [49] ZHANG QQ, CHEN QS, FENG F, et al. Benzoylaconitine: A promising ACE2-targeted agonist for enhancing cardiac function in heart failure. Free Radic Biol Med. 2024;214:206-218. [50] YANG X, FU Y, LIU J, et al. A new application of nano-selenium: rescue of CK2 and mitochondria from oxidative stress to prevent cardiac hypertrophy. Nanomedicine (Lond). 2023;18(21):1421-1439. [51] AN D, ZENG Q, ZHANG P, et al. Alpha-ketoglutarate ameliorates pressure overload-induced chronic cardiac dysfunction in mice. Redox Biol. 2021;46:102088. |
[1] | Yu Jingbang, Wu Yayun. Regulatory effect of non-coding RNA in pulmonary fibrosis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(8): 1659-1666. |
[2] | Ji Yaqiong, Ning Zhongping. Protective effect of paeoniflorin on angiotensin II-induced fibrosis in cardiac fibroblasts [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(25): 5382-5389. |
[3] | Zhou Lijun, Zhang Keyuan, Xu Feihu, Wang Xi, Yu Li, Dong Shiming, Xu Junyu, Guo Yufeng, Ma Hairong, Ding Hong. Effect and mechanism of circular RNA SEC24A on proliferation and apoptosis of synovial fibroblasts in osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(24): 5086-5092. |
[4] | Liu Chenyang, Wang Jin, Zhang Wenting, Wang Liqing, Yin Xiaoxiao, Zhao Junnan, Jiao Xiangying. Inhibitory effect of angiotensin II on the brown fat differentiation of rat bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2025, 29(23): 4859-4867. |
[5] | Sun Teng, Han Yu, Wang Shuang, Li Jialei, Cao Jimin. miR-20a regulates pressure overload-induced cardiac hypertrophy [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 1021-1028. |
[6] | Hu Lingli, Li Na, Li Jingyang, Zhang Eryun, Chen Yu, Gu Ying. Role of non-coding RNA and exosomes in pathogenesis of gestational diabetes mellitus and their early diagnostic value [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(31): 5070-5077. |
[7] | Hai Zhen, Ning Zhongping. Protective effect of salidroside on angiotensin II-induced fibrosis in cardiac fibroblasts [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(20): 3137-3142. |
[8] | Hou Yiwen, Liu Ying, Li Zhurong, Chen Chen, Li Zhencheng, Liu Yang. Correlation analysis of circular RNAs involved in liver injury in mice with autoimmune hepatitis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(14): 2152-2158. |
[9] | Nie Chenchen, Su Kaiqi, Gao Jing, Fan Yongfu, Ruan Xiaodi, Yuan Jie, Duan Zhaoyuan, Feng Xiaodong. The regulatory role of circular RNAs in cerebral ischemia-reperfusion injury [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(8): 1286-1291. |
[10] | Li Long, Li Guangdi, Shi Hao, Deng Keqi. Circular RNA as a competing endogenous RNA is involved in the regulation of osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(5): 751-757. |
[11] | Li Zhichao, Tan Guoqing, Su Hui, Xu Zhanwang, Xue Haipeng. Regulatory role of non-coding RNAs as potential therapeutic targets in spinal cord injury [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(5): 758-764. |
[12] | Liu Xingyu, Liu Riguang, Li Guangdi, Wang Jian, Li Long, Shi Hao, Deng Keqi. Competing endogenous RNA regulates the development of osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(28): 4559-4565. |
[13] | Yue Ying, Hao Wenli, Gan Yongkang. Effects of enalapril folic acid on vascular endothelial cell activity and angiotensin II and angiotensin-converting enzyme levels in a rat model of lower extremity venous embolism [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(24): 3877-3882. |
[14] | Yang Lijuan, Yao Na, Lu Ruiwen, Liu Xiaoyu, Wang Baojun. Bleomycin combined with angiotensin II for establishing a mouse model of aortic dissection [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(14): 2194-2199. |
[15] | Huang Bin, Zheng Jinxu, Zhang Jun. Progress of non-coding RNAs in stem cell abnormality of idiopathic pulmonary fibrosis [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(1): 130-137. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 42
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 41
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||