Chinese Journal of Tissue Engineering Research ›› 2024, Vol. 28 ›› Issue (32): 5085-5090.doi: 10.12307/2024.426
Song Jiating, Chen Jianmin, Wang Kewen, Huang Lanying, Xu Senming, Gui Yuchang, Xu Jianwen
Received:
2023-06-27
Accepted:
2023-07-29
Online:
2024-11-18
Published:
2023-12-28
Contact:
Xu Jianwen, MD, Chief physician, Professor, Doctoral supervisor, Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
About author:
Song Jiating, Master candidate, Physician, Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
Supported by:
CLC Number:
Song Jiating, Chen Jianmin, Wang Kewen, Huang Lanying, Xu Senming, Gui Yuchang, Xu Jianwen. Metabolomics analysis of serum and urine in patients with traumatic spinal cord injury[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(32): 5085-5090.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.5 生物标志物的验证 ROC曲线分析结果提示葫芦素糖苷在尿液中的AUC为0.80,血清中为0.70;他索沙坦在尿液中的AUC为0.70,血清中为0.76,见图6A。实施Logistic回归拟合后,葫芦素糖苷和他索沙坦的联合AUC在血清中为0.89,尿液中为0.88。将血清和尿液的检测结果进一步拟合后,代谢物组合的AUC为0.94,见图6B。这些结果提示,血清和尿液中的葫芦素糖苷和他索沙坦对于两组人群具有较好的区分性能,二者联合作为生物标志物时的区分性能明显高于单个化合物。十折交叉验证的结果提示一致性检验指标(Kappa系数)为0.68,准确度(Accuracy)为0.86,表明该模型较为稳定。"
[1] GU Y, CHEN D, ZHOU L, et al. Lysine-specific demethylase 1 inhibition enhances autophagy and attenuates early-stage post-spinal cord injury apoptosis. Cell Death Discov. 2021;7(1):69. [2] ZHENG Y, MAO YR, YUAN TF, et al. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation. Neural Regen Res. 2020;15(8):1437-1450. [3] LAI Z, LIU H, LIU G. Meta-Analysis on the Effects of Electric Acupuncture on Neural Functional Recovery and Related Pathways of Rats after Spinal Cord Injury. Biomed Res Int. 2022;2022:8613384. [4] KYRITSIS N, TORRES-ESPÍN A, SCHUPP PG, et al. Diagnostic blood RNA profiles for human acute spinal cord injury. J Exp Med. 2021;218(3): e20201795. [5] BYKOWSKI EA, PETERSSON JN, DUKELOW S, et al. Urinary biomarkers indicative of recovery from spinal cord injury: A pilot study. IBRO Neurosci Rep. 2021;10:178-185. [6] 杨新乐,王明,杨成伟,等.脊髓损伤的代谢组学研究进展[J].中国康复理论与实践,2018,24(8):904-908. [7] WANG X, ZHANG L, SUN W, et al. Changes of Metabolites in Acute Ischemic Stroke and Its Subtypes. Front Neurosci. 2021;14:580929. [8] BANOEI MM, CASAULT C, METWALY SM, et al. Metabolomics and Biomarker Discovery in Traumatic Brain Injury. J Neurotrauma. 2018;35(16):1831-1848. [9] ZHOU Y, ZHANG X, CHEN R, et al. Serum amino acid metabolic profiles of ankylosing spondylitis by targeted metabolomics analysis. Clin Rheumatol. 2020;39(8):2325-2336. [10] 梁子超,李智炜,赖铿,等.10折交叉验证用于预测模型泛化能力评价及其R软件实现[J].中国医院统计,2020,27(4):289-292. [11] RUPP R, BIERING-SØRENSEN F, BURNS SP, et al. International Standards for Neurological Classification of Spinal Cord Injury: Revised 2019. Top Spinal Cord Inj Rehabil. 2021;27(2):1-22. [12] 康海琼,周红俊,刘根林,等.脊髓损伤神经学分类国际标准检查表2019版最新修订及解读[J].中国康复理论与实践,2019,25(8):983-985. [13] WANG R, LIU S, LIU T, et al. Mass spectrometry-based serum lipidomics strategy to explore the mechanism of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves in the treatment of ischemic stroke. Food Funct. 2021;12(10):4519-4534. [14] KWON BK, STREIJGER F, FALLAH N, et al. Cerebrospinal Fluid Biomarkers To Stratify Injury Severity and Predict Outcome in Human Traumatic Spinal Cord Injury. J Neurotrauma. 2017;34(3):567-580. [15] FAN B, WEI Z, FENG S. Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Res. 2022;10(1):35. [16] PANG Y, LIU X, ZHAO C, et al. LC-MS/MS-based arachidonic acid metabolomics in acute spinal cord injury reveals the upregulation of 5-LOX and COX-2 products. Free Radic Biol Med. 2022;193(Pt 1):363-372. [17] 胡华辉,黄小龙,全仁夫,等.急性脊髓损伤模型大鼠血清和脊髓的代谢组学研究[J].中国骨伤,2017,30(2):152-158. [18] LIU Z, KUMAR M, KABRA A. Cucurbitacin B exerts neuroprotection in a murine Alzheimer’s disease model by modulating oxidative stress, inflammation, and neurotransmitter levels. Front Biosci (Landmark Ed). 2022;27(2):71. [19] JI L, CHEN S, GU G, et al. Discovery of potential biomarkers for human atherosclerotic abdominal aortic aneurysm through untargeted metabolomics and transcriptomics. J Zhejiang Univ Sci B. 2021;22(9):733-745. [20] DOLCI S, MANNINO L, BOTTANI E, et al. Therapeutic induction of energy metabolism reduces neural tissue damage and increases microglia activation in severe spinal cord injury. Pharmacol Res. 2022;178:106149. [21] WANG R, SHI L, LIU S, et al. Mass spectrometry-based urinary metabolomics for the investigation on the mechanism of action of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves against ischemic stroke in rats. J Ethnopharmacol. 2019;241:111969. [22] FUJIEDA Y, UENO S, OGINO R, et al. Metabolite profiles correlate closely with neurobehavioral function in experimental spinal cord injury in rats. PLoS One. 2012;7(8):e43152. [23] PENG J, ZENG J, CAI B, et al. Establishment of quantitative severity evaluation model for spinal cord injury by metabolomic fingerprinting. PLoS One. 2014;9(4):e93736. [24] JONES ZB, REN Y. Sphingolipids in spinal cord injury. Int J Physiol Pathophysiol Pharmacol. 2016;8(2):52-69. [25] DALKILIC T, FALLAH N, NOONAN VK, et al. Predicting Injury Severity and Neurological Recovery after Acute Cervical Spinal Cord Injury: A Comparison of Cerebrospinal Fluid and Magnetic Resonance Imaging Biomarkers. J Neurotrauma. 2018;35(3):435-445. [26] HUFFMAN EE, DONG BE, CLARKE HA, et al. Cervical spinal cord injury leads to injury and altered metabolism in the lungs. Brain Commun. 2023; 5(2):fcad091. [27] MAR FM, DA SILVA TF, MORGADO MM, et al. Myelin Lipids Inhibit Axon Regeneration Following Spinal Cord Injury: a Novel Perspective for Therapy. Mol Neurobiol. 2016;53(2):1052-1064. [28] PATWARDHAN AM, SCOTLAND PE, AKOPIAN AN, et al. Activation of TRPV1 in the spinal cord by oxidized linoleic acid metabolites contributes to inflammatory hyperalgesia. Proc Natl Acad Sci U S A. 2009;106(44): 18820-18824. [29] LIM SN, HUANG W, HALL JC, et al. Improved outcome after spinal cord compression injury in mice treated with docosahexaenoic acid. Exp Neurol. 2013;239:13-27. [30] TANG J, ZENG X, LI H, et al. Repulsive Guidance Molecule-a and Central Nervous System Diseases. Biomed Res Int. 2021;2021:5532116. [31] MCFADDEN K, MINSHEW NJ. Evidence for dysregulation of axonal growth and guidance in the etiology of ASD. Front Hum Neurosci. 2013;7:671. [32] FUJITA Y, YAMASHITA T. The roles of RGMa-neogenin signaling in inflammation and angiogenesis. Inflamm Regen. 2017;37:6. [33] FREUND P, SEIF M, WEISKOPF N, et al. MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers. Lancet Neurol. 2019;18(12):1123-1135. [34] CHAY W, KIRSHBLUM S. Predicting Outcomes After Spinal Cord Injury. Phys Med Rehabil Clin N Am. 2020;31(3):331-343. [35] MAILLARD MP, ROSSAT J, BRUNNER HR, et al. Tasosartan, enoltasosartan, and angiotensin II receptor blockade: the confounding role of protein binding. J Pharmacol Exp Ther. 2000;295(2):649-654. [36] GROOTHUIS JT, THIJSSEN DH, RONGEN GA, et al. Angiotensin II contributes to the increased baseline leg vascular resistance in spinal cord-injured individuals. J Hypertens. 2010;28(10):2094-2101. [37] JÄRVE A, TODIRAS M, LIAN X, et al. Distinct roles of angiotensin receptors in autonomic dysreflexia following high-level spinal cord injury in mice. Exp Neurol. 2019;311:173-181. [38] ASSIS AD, MASCARENHAS FNADP, ARAÚJO FA, et al. Angiotensin-(1-7) receptor Mas antagonist (A779) influenced gliosis and reduced synaptic density in the spinal cord after peripheral axotomy. Peptides. 2020;129: 170329. [39] KU JM, KIM SR, HONG SH, et al. Cucurbitacin D induces cell cycle arrest and apoptosis by inhibiting STAT3 and NF-κB signaling in doxorubicin-resistant human breast carcinoma (MCF7/ADR) cells. Mol Cell Biochem. 2015;409 (1-2):33-43. [40] MUTALIK SP, GUPTON SL. Glycosylation in Axonal Guidance. Int J Mol Sci. 2021;22(10):5143. [41] SOLEILHAVOUP C, TRAVAGLIO M, PATRICK K, et al. Nolz1 expression is required in dopaminergic axon guidance and striatal innervation. Nat Commun. 2020;11(1):3111. [42] Í DALI C, GROESCHEL S, MOLDOVAN M, et al. Intravenous arylsulfatase A in metachromatic leukodystrophy: a phase 1/2 study. Ann Clin Transl Neurol. 2021;8(1):66-80. [43] CRUZ CD, COELHO A, ANTUNES-LOPES T, et al. Biomarkers of spinal cord injury and ensuing bladder dysfunction. Adv Drug Deliv Rev. 2015;82-83: 153-159. [44] YANG H, ZHANG P, XIE M, et al. Parallel Metabolomic Profiling of Cerebrospinal Fluid, Plasma, and Spinal Cord to Identify Biomarkers for Spinal Cord Injury. J Mol Neurosci. 2022;72(1):126-135. |
[1] |
Song Jiating, Chen Jianmin, Wang Kewen, Huang Lanying, Xu Senming, Gui Yuchang, Xu Jianwen.
Metabolomics analysis of serum and urine in patients with traumatic spinal cord injury #br#
#br#
[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(在线): 1-6.
|
[2] | Zhou Chao, Yu Guangyu, Fan Jiaqi, Yu Chunmei, Wu Min, Chen Shibei. Establishment and validation of embryo high-quality prediction models based on the third-day 340 nm absorbance embryo culture [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 1050-1056. |
[3] | Bu Xianzhong, Bu Baoxian, Xu Wei, Zhang Chi, Zhang Yisheng, Zhong Yuanming, Li Zhifei, Tang Fubo, Mai Wei, Zhou Jinyan. Analysis of serum differential proteomics in patients with acute cervical spondylotic radiculopathy [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(4): 535-541. |
[4] | Lu Xiaoling, Liu Bin, Xu Bin. Bioinformatics identification and validation of genes related to fatty acid metabolism in rheumatoid arthritis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(32): 5116-5121. |
[5] | Li Shudong, Liang Xuezhen, Luo Di, Li Jiacheng, Yan Bozhao, Li Gang. Identification of biomarkers associated with ferroptosis and pyroptosis for the potential diagnosis of postmenopausal osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(28): 4511-4515. |
[6] | Xu Wenfei, Ming Chunyu, Mei Qijie, Yuan Changshen, Guo Jinrong, Zeng Chao, Duan Kan. Experimental validation of machine learning identification of KDELR3 as a signature gene for osteoarthritis hypoxia [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(21): 3431-3437. |
[7] | Li Xiaoyin, Yang Xiaoqing, Chen Shulian, Li Zhengchao, Wang Ziqi, Song Zhen, Zhu Daren, Chen Xuyi. Collagen/silk fibroin scaffold combined with neural stem cells in the treatment of traumatic spinal cord injury [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(6): 890-896. |
[8] | Liang Xuezhen, Luo Di, Li Jiacheng, Wen Mingtao, Zhang Jian, Xu Bo, Li Gang. PTGS2 and STAT3 in steroid-induced osteonecrosis of the femoral head: ferroptosis-related potential diagnostic biomarkers [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(36): 5898-5904. |
[9] | Qi Xue, Li Jiahui, Zhu Yuanfeng, Yu Lu, Wang Peng. Phosphorylation modification of alpha synuclein in serum of patients with Parkinson’s disease [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(35): 5577-5582. |
[10] | Zhang Shijing, Huang Zhuojian, Tao Quyuan, Hou Jiangtao, Peng Bin, Luo Yongxin, Li Yanwu, Li Huibiao, Zhong Jiamin, Chen Xinlin. Molecular characteristic of immune cells in ulcerative colitis patients with spleen deficiency and dampness syndrome based on single-cell RNA sequencing [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(33): 5357-5362. |
[11] | Zhao Zirui, Hu Qiaoyu, Qi Xia, Liu Qing. Metabolomics evaluation of periodontitis: biomarkers, pathological mechanism and systemic relationship [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(26): 4239-4245. |
[12] | Wang Yiying, Li Ruiqing, Li Jingwen, Mei Jinjin, Zhang Jianyun, Zhang Lihong, Fan Yongfu, Guo Jian. Exosome-mediated cellular communication: a potential biomarker for Parkinson’s disease [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(24): 3883-3891. |
[13] | He Bo, He Zhijun, Liu Tao, Ma Suilu. Mechanism of Xiaozhong Zhitong Mixture against ischemia-reperfusion injury of skin flaps based on metabolomics [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(23): 3653-3659. |
[14] | Zhao Yan, Xia Qiuqiu, Xiang Shaojie, Mao Qiming, Kong Weijun, Du Qian, Liao Wenbo, Xin Zhijun. Exosomal miRNA in the repair mechanism of degenerative diseases of the spine and joints [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(19): 3040-3051. |
[15] | Li Zhe, Yuan Changshen, Guan Yanbing, Xu Wenfei, Liao Shuning, Rong Weiming, Mei Qijie, Duan Kan. Bioinformatic analysis and experimental validation of ferroptosis in osteoarthritis [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(17): 2637-2643. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||