Chinese Journal of Tissue Engineering Research ›› 2024, Vol. 28 ›› Issue (25): 3988-3993.doi: 10.12307/2024.187
Previous Articles Next Articles
Zhang Min1, Lou Guo2, Fu Changxi3
Received:
2023-07-04
Accepted:
2023-08-11
Online:
2024-09-08
Published:
2023-11-23
Contact:
Fu Changxi, Doctoral candidate, Associate professor, Department of Physical Education, Xuzhou University of Technology, Xuzhou 221008, Jiangsu Province, China
About author:
Zhang Min, Master, Lecturer, Nanjing Vocational College of Tourism, Nanjing 211100, Jiangsu Province, China
Supported by:
CLC Number:
Zhang Min, Lou Guo, Fu Changxi. Aerobic exercise preconditioning improves therapeutic effect of bone marrow mesenchymal stem cells on acute myocardial infarction[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(25): 3988-3993.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 实验动物数量分析 实验过程中,由于造模失败、死亡(感染、环境变化等)、拒跑等原因,共剔除9只动物,因此最终纳入统计的样本量为61只,各组样本量分别为:假手术组(n=10)、模型组(n=11)、干细胞治疗组(n=13)、运动预适应组(n=14)、联合干预组(n=13)。 2.2 骨髓间充质干细胞鉴定结果 流式细胞仪检测结果显示,细胞表面标志物CD54、CD90阳性率分别为92.53%和98.75%(阳性表达),CD34、CD45阳性率分别为0.89%和1.37%(阴性表达)。因此,所检测细胞表面标志物符合大鼠骨髓干细胞表面抗原表达类型。 2.3 骨髓间充质干细胞向心肌梗死部位迁移情况 荧光显微镜下观察,CM-DiI荧光标记的骨髓间充质干细胞均显红色荧光,见图1A。细胞移植后18 h,免疫荧光染色显示细胞核呈蓝色,CM-Dil标记的骨髓间充质干细胞呈红色,聚集于心肌梗死部位,成团分布,生长良好,见图1B。与干细胞治疗组比较,联合干预组CM-Dil免疫荧光强度增加(P < 0.05),见图1C。"
2.5 各组大鼠体质量、心脏质量、心脏结构和心功能比较 与假手术组比较,模型组心脏质量、心脏质量指数、左心室质量、左心室质量指数、左心室收缩期内径、左心室舒张期内径增加(P < 0.05),左心室射血分数和左心室缩短分数下降(P < 0.05)。与模型组比较,干细胞治疗组心脏质量、心脏质量指数、左心室质量、左心室质量指数、左心室收缩期内径、左心室舒张期内径降低(P < 0.05);干细胞治疗组、运动预适应组、联合干预组左心室射血分数和左心室缩短分数升高(P < 0.05),其他各参数均无统计学意义(P > 0.05)。与干细胞治疗组比较,联合干预组心脏质量、心脏质量指数、左心室质量、左心室质量指数、左心室收缩期内径、左心室舒张期内径以及左心室射血分数和左心室缩短分数均增加(P < 0.05)。各组间体质量、左心室舒张期游离壁厚度和收缩期室间隔厚度比较无显著意义(P > 0.05),见表2。"
2.6 各组心肌梗死面积与胶原纤维含量比较 心脏2,3,5-氯化三苯基四氮唑染色显示,心肌非梗死区呈红色,心肌梗死区呈白色(虚线部分),见图2A。心肌Masson染色显示,假手术组心肌间质几乎无胶原纤维,模型组出现大量胶原纤维沉积,干细胞治疗组、运动预适应组和联合干预组心肌纤维化程度降低,以联合干预组更为明显,见图2B。与假手术组比较,模型组心肌梗死面积和胶原容积分数均增加(P < 0.05);与模型组比较,干细胞治疗组、运动预适应组和联合干预组心肌梗死面积、胶原容积分数减少(P < 0.05);与干细胞治疗组比较,联合干预组心肌梗死面积和胶原容积分数降低(P < 0.05),见图2C,D。"
2.9 各组心肌蛋白表达量比较 与假手术组比较,模型组肿瘤坏死因子α表达升高(P < 0.05),白细胞介素10和血管内皮生长因子表达下降(P < 0.05)。与模型组比较,干细胞治疗组和联合干预组CXC趋化因子受体蛋白4表达升高(P < 0.05),干细胞治疗组、运动预适应组和联合干预组肿瘤坏死因子α表达下降(P < 0.05),白细胞介素10和血管内皮生长因子表达增加(P < 0.05)。与干细胞治疗组比较,联合干预组肿瘤坏死因子α表达降低(P < 0.05),CXC趋化因子受体蛋白4、白细胞介素10和血管内皮生长因子表达升高(P < 0.05)。各组基质细胞衍生因子1表达量比较无显著差异(P > 0.05),见图5。"
[1] DAUERMAN HL, IBANEZ B. The Edge of Time in Acute Myocardial Infarction. J Am Coll Cardiol. 2021;77(15):1871-1874. [2] SAITO Y, OYAMA K, TSUJITA K, et al. Treatment strategies of acute myocardial infarction: updates on revascularization, pharmacological therapy, and beyond. J Cardiol. 2023;81(2):168-178. [3] FRANTZ S, HUNDERTMARK MJ, SCHULZ-MENGER J, et al. Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies. Eur Heart J. 2022;43(27):2549-2561. [4] 孙维兴,赵永超,赵然尊.间充质干细胞移植治疗心肌梗死:问题、症结及新突破[J].中国组织工程研究,2021,25(19):3103-3109. [5] YAMADA Y, MINATOGUCHI S, KANAMORI H, et al. Stem cell therapy for acute myocardial infarction - focusing on the comparison between muse cells and mesenchymal stem cells. J Cardiol. 2022;80(1):80-87. [6] 陈天然,潘珊珊.运动预适应:心脏康复预防与治疗的新策略[J].上海体育学院学报,2021,45(10):72-80. [7] SCHAUN MI, MOTTA LL, TEIXEIRA R, et al. Preventive physical training partially preserves heart function and improves cardiac antioxidant responses in rats after myocardial infarction preventive physical training and myocardial infarction in rats. Int J Sport Nutr Exerc Metab. 2017;27(3):197-203. [8] 杨斌宾,詹蔷,邹密,等. 运动促进青春期小鼠造血干细胞造血重建功能[J].中国病理生理杂志,2022,38(6):1056-1062. [9] 范朋琦,秦永生,彭朋.不同运动方式对自发性高血压大鼠心脏重塑和运动能力的影响[J].现代预防医学,2018,45(23):4341-4345. [10] 孟宪欣,管泽毅,葛吉生,等.间歇运动干预自发性高血压大鼠病理性心脏肥大:运动强度与健康效应的关系[J].体育科学,2019,39(6):73-82. [11] 李朝中,肖践明,陈丽星,等.大鼠骨髓间充质干细胞体外分离培养与cm-dii荧光标记[J].中国组织工程研究,2014,18(1):39-44. [12] DE FREITAS JS, NEVES CA, DEL CARLO RJ, et al. Effects of exercise training and stem cell therapy on the left ventricle of infarcted rats. Rev Port Cardiol (Engl Ed). 2019; 38(9):649-656. [13] HUANG P, WANG L, LI Q, et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA h19. Cardiovasc Res. 2020;116(2):353-367. [14] JENČA D, MELENOVSKÝ V, STEHLIK J, et al. Heart failure after myocardial infarction: incidence and predictors. ESC Heart Fail. 2021;8(1):222-237. [15] TAN Y, WANG L, CHEN G, et al. Hyaluronate supports hesc-cardiomyocyte cell therapy for cardiac regeneration after acute myocardial infarction. Cell Prolif. 2020;53(12): e12942. [16] XUAN L, FU D, ZHEN D, et al. Extracellular vesicles derived from human bone marrow mesenchymal stem cells protect rats against acute myocardial infarction-induced heart failure. Cell Tissue Res. 2022;389(1):23-40. [17] SHARMA AK, KUMAR A, SAHU M, et al. Exercise preconditioning and low dose copper nanoparticles exhibits cardioprotection through targeting gsk-3β phosphorylation in ischemia/reperfusion induced myocardial infarction. Microvasc Res. 2018;120:59-66. [18] HAFEZ S, KHAN MB, AWAD ME, et al. Short-term acute exercise preconditioning reduces neurovascular injury after stroke through induced eNOS activation. Transl Stroke Res. 2020;11(4):851-860. [19] 朱政,付常喜,马文超,等.有氧运动调控自发性高血压模型大鼠心脏重塑的机制[J].中国组织工程研究,2022,26(14):2231-2237. [20] 施曼莉,李晓霞.有氧运动对慢性心力衰竭大鼠病理性心脏肥大的影响[J].体育学刊,2015,22(3):127-134. [21] ZHUANG C, LUO X, WANG Q, et al. The effect of exercise training and physiotherapy on diastolic function, exercise capacity and quality of life in patients with heart failure with preserved ejection fraction: a systematic review and meta-analysis. Kardiol Pol. 2021;79(10):1107-1115. [22] CAMERA DM, SMILES WJ, HAWLEY JA. Exercise-induced skeletal muscle signaling pathways and human athletic performance. Free Radic Biol Med. 2016;98:131-143. [23] FIUZA-LUCES C, SANTOS-LOZANO A, JOYNER M, et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat Rev Cardiol. 2018;15(12):731-743. [24] ONG SB, HERNÁNDEZ-RESÉNDIZ S, CRESPO-AVILAN GE, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther. 2018;186:73-87. [25] 何灵娟,周斌.心肌干细胞与心脏再生的研究进展及展望[J].中国科学:生命科学,2021,51(1):12-25. [26] 刘远志,周吉银,黄毅岚,等.促进间充质干细胞归巢的研究进展及其相关机制[J].生理科学进展,2018,49(3):237-241. [27] UNZEK S, ZHANG M, MAL N, et al. Sdf-1 recruits cardiac stem cell-like cells that depolarize in vivo. Cell Transplant. 2007;16(9):879-886. [28] GATTI M, PATTAROZZI A, BAJETTO A, et al. Inhibition of cxcl12/cxcr4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity. Toxicology. 2013;314(2-3):209-220. [29] DONG F, HARVEY J, FINAN A, et al. Myocardial cxcr4 expression is required for mesenchymal stem cell mediated repair following acute myocardial infarction. Circulation. 2012;126(3):314-324. [30] WANG M, HU R, YANG Y, et al. In vivo ultrasound molecular imaging of sdf-1 expression in a swine model of acute myocardial infarction. Front Pharmacol. 2019;10:e899. [31] KWON SG, PARK I, KWON YW, et al. Role of stem cell mobilization in the treatment of ischemic diseases. Arch Pharm Res. 2019;42(3):224-231. [32] UEMATSU M, YOSHIZAKI T, SHIMIZU T, et al. Sustained myocardial production of stromal cell-derived factor-1α was associated with left ventricular adverse remodeling in patients with myocardial infarction. Am J Physiol Heart Circ Physiol. 2015;309(10):H1764-H1771. [33] SARTO P, BALDUCCI E, BALCONI G, et al. Effects of exercise training on endothelial progenitor cells in patients with chronic heart failure. J Card Fail. 2007;13(9):701-708. [34] XIA WH, LI J, SU C, et al. Physical exercise attenuates age-associated reduction in endothelium-reparative capacity of endothelial progenitor cells by increasing cxcr4/jak-2 signaling in healthy men. Aging Cell. 2012;11(1):111-119. [35] THACKERAY JT, HUPE HC, WANG Y, et al. Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J Am Coll Cardiol. 2018;71(3):263-275. [36] SHIRAKAWA K, ENDO J, KATAOKA M, et al. IL (interleukin)-10-stat3-galectin-3 axis is essential for osteopontin-producing reparative macrophage polarization after myocardial infarction. Circulation. 2018;138(18):2021-2035. [37] TAO Z, TAN S, CHEN W, et al. Stem cell homing: a potential therapeutic strategy unproven for treatment of myocardial injury. J Cardiovasc Transl Res. 2018;11(5): 403-411. [38] PEDERSEN BK. Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Invest. 2017;47(8):600-611. [39] CHUNG C. From oxygen sensing to angiogenesis: targeting the hypoxia signaling pathway in metastatic kidney cancer. Am J Health Syst Pharm. 2020;77(24):2064-2073. [40] LI T, ZHANG T. The application of nanomaterials in angiogenesis. Curr Stem Cell Res Ther. 2021;16(1):74-82. |
[1] | Lou Guo, Zhang Yan, Fu Changxi. Role of endothelial nitric oxide synthase in exercise preconditioning-induced improvement of myocardial ischemia-reperfusion injury [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(8): 1283-1288. |
[2] | Lin Feng, Cheng Ling, Gao Yong, Zhou Jianye, Shang Qingqing. Hyaluronic acid hydrogel-encapsulated bone marrow mesenchymal stem cells promote cardiac function in myocardial infarction rats (III) [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(3): 355-359. |
[3] | Bi Yujie, Ma Dujun, Peng Liping, Zhou Ziqiong, Zhao Jing, Zhu Houjun, Zhong Qiuhui, Yang Yuxin. Strategy and significance of Chinese medicine combined with medical hydrogel for disease treatment [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(3): 419-425. |
[4] | Yang Qipei, Chen Feng, Cui Wei, Zhang Chi, Wu Ruiqi, Song Zhenheng, Meng Xin. Signaling pathways related to kaempferol active monomers in the treatment of osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(26): 4242-4249. |
[5] | Xu Wenjie, Xie Xudong, He Ruibo, Ma Gang, Peng peng. Effect and mechanism of angiotensin (1-7) supplementation combined with exercise therapy on cardiac remodeling in rats with renal hypertension [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(26): 4137-4144. |
[6] | Yang Shanshan, Ouyang Renjun, Tian Jia, Linghu Min, Wang Zhen, Yang Xiaohong. Detection of immune-related cytokines of bone marrow mesenchymal stem cells in postmenopausal osteoporosis mice by antibody chip and analysis of key differential genes [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(25): 3947-3954. |
[7] | Han Dunzheng, Qin Xiaozhou, Pan Xiudi, Lu Waner, Dai Ying, Chen Yanxun, Cheng Xianfei, Tang Muhan. Effect of apoptosis-inducing factor gene knockdown on bone marrow mesenchymal stem cell transplantation for myocardial infarction [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(25): 3967-3973. |
[8] | Yin Gonghua, Xu Ruoyao, Zhang Lijuan, Zhang Yifan, Qi Jie, Zhang Jun. Regulation of N6-methyladenosine on non-coding RNAs in pathological cardiac remodeling [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(20): 3252-2358. |
[9] | Sun Yuan, Wang Qingbo, Pi Yihua, Lu Chunmin, Xu Chuanyi, Zhang Yan. Effects of early and late aerobic exercise on right heart failure induced by monocrotaline in rats with pulmonary hypertension [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(2): 177-185. |
[10] | Chen Na, Wang Yanlin, Sun Huifang, Fan Feiyan, Li Donghong, Zhang Yunke. Shexiang Huangqi compound dripping pills-containing serum promotes proliferation and differentiation of bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(19): 2960-2966. |
[11] | Gou Qiutong, Luo Wenhao, Wang Pin, Lan Yuyan, Liu Min, Huang Haixia. Berberine promotes osteogenic differentiation of bone marrow mesenchymal stem cells in a high-glucose environment [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(19): 2974-2980. |
[12] | Wang Xu, Wu Yajie, Zhang Xinfu, Shi Zhi, Yang Tengyun, Xiong Bohan, Lu Xiaojun, Zhao Daohong. Expression and action mechanism of stromal cell-derived factor 1 in tendon-bone healing of rabbit rotator cuff [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(19): 3049-3054. |
[13] | Tang Liang, Wang Hexia, Wang Qingbo, Pi Yihua, Zhang Yan. Aerobic exercise modulates mitochondrial quality control system to reverse cardiac pathological remodeling in aging rats [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(16): 2534-2541. |
[14] | Lyu Shangyi, He Huiyu, Wufanbieke · Baheti, Yang Quan, Ma Lisha, Han Xiangzhen. Physicochemical properties and biocompatibility of graphene oxide-hydroxyapatite composite coating materials [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(10): 1477-1483. |
[15] | Xu Jingzhi, Wang Wenbo, Sun Huiwen, Gu Yong. In vitro experiment of stem cell engineered two-sided anisotropic electrospun membranes for promoting dural repair [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(10): 1540-1546. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||