Chinese Journal of Tissue Engineering Research ›› 2017, Vol. 21 ›› Issue (13): 2120-2126.doi: 10.3969/j.issn.2095-4344.2017.13.025
Previous Articles Next Articles
Weng Min-hua, Yang Hong-xia, Zhang Jian-yong
Revised:
2017-03-29
Online:
2017-05-08
Published:
2017-06-09
Contact:
Zhang Jian-yong, M.D., Professor, Master’s supervisor, Second Department of Respiratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563099, Guizhou Province, China
About author:
Weng Min-hua, Studying for master’s degree, Second Department of Respiratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563099, Guizhou Province, China
Supported by:
the Science and Technology Funded Project of Guizhou Province, No. [2013]2329
CLC Number:
Weng Min-hua, Yang Hong-xia, Zhang Jian-yong. Underlying mechanisms and potential of adipose-derived stem cells in the treatment of bronchial asthma[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(13): 2120-2126.
2.1 脂肪干细胞在减轻哮喘气道炎症和降低气道高反应方面的作用 2.1.1 气道炎症可使脂肪干细胞定向募集并定植在损伤的气道上皮 哮喘本质上是一种慢性气道炎症导致的气道痉挛性收缩并最终发展为不可逆的气道重塑[2]。由于过敏性鼻炎和哮喘在包括解剖位置,功能和局部免疫性上都存在明显的重叠,学者逐渐将过敏性鼻炎和哮喘作为气道过敏性疾病的连续体来研究,二者具有共同的病因只是存在不同的终末器官表现[7]。 Cho等[10]2009年的研究表明,过敏性气道炎症的特征在于嗜酸粒细胞浸润在靶组织如鼻黏膜和肺中占优势。在腹腔注射的鸡卵蛋白致敏的小鼠过敏性鼻炎模型中,静脉内施用的脂肪干细胞会更多地迁移到鼻黏膜中,结果表明对变应原的免疫应答可以改善在变应原进入位点处脂肪干细胞募集的环境,增强脂肪干细胞迁移到炎症发生部位。在鸡卵蛋白致敏的哮喘小鼠模型中也发现了脂肪干细胞在肺内的迁移较对照组明显增加[11]。基于这些研究,作者推测脂肪干细胞可能是通过定向迁移到炎症发生的部位来减少了支气管周围和血管周围的嗜酸粒细胞炎症和黏液产生,因此而降低了气道高反应性。 虽然过敏性气道炎症增加了脂肪干细胞迁移到鼻和肺中的机制尚不清楚,但据几项研究可以推测其可能的机制如下,首先以脂肪干细胞为代表的间充质干细胞的迁移可能是由趋化因子的浓度梯度导航的。升高的炎症趋化因子水平是将间充质干细胞运输到损伤部位的关键介质。趋化因子在组织损伤后释放,诱导间充质干细胞表达趋化因子的几种受体[12-13]。间充质干细胞与趋化因子梯度的相互作用激活了间充质干细胞向炎症损伤部位动员[14]。其次,间充质干细胞在肺组织的中的募集及定植作用可能是通过趋化因子1激活趋化因子1/ CXC趋化因子受体4(CXC chemokine receptor 4,CXCR4)轴实现的[15]。趋化因子1α(也称CXCL12)与CXCR4受体的相互作用使间充质干细胞激活并启动增殖和迁移至损伤部位。CXCR4是在骨髓干细胞,受损组织和肿瘤细胞中表达增加的趋化因子1受体,而在连续培养中通常不在间充质干细胞表面上表达[16]。换言之,在损伤部位产生的趋化因子1α趋化因子导致间充质干细胞激活并朝向损伤的组织募集与定植。此外,过敏性鼻炎和哮喘小鼠模型中增加的气道粘膜血流量和炎症引起的微血管渗漏也可以诱导增加的脂肪干细胞迁移到鼻和肺组织中[17]。 2.1.2 脂肪干细胞通过调节Th1/Th2的平衡缓解气道炎症 近年来,Th2细胞过度激活而Th1细胞功能不足而导致Th1/ Th2失衡是哮喘发生发展的重要机制逐渐成为学界的普遍认识。正常生理状态下Th1细胞及其分泌的细胞因子对哮喘具有保护作用,而Th2细胞与其他炎性细胞如肥大细胞,B细胞和嗜酸性粒细胞一起被认为在哮喘的发生和发展中起关键作用。最近一项研究发现,在Th2细胞占优势的嗜酸粒细胞性过敏性气道炎症的小鼠哮喘模型中,发现经尾静脉移植脂肪干细胞和转染了半氧合酶1基因的脂肪干细胞的小鼠肺泡灌洗液中以白细胞介素4、白细胞介素5、白细胞介素13为代表的Th2细胞因子含量下降,而以干扰素γ为代表的Th1细胞因子含量明显上升,表明脂肪干细胞能够对Th2应答进行选择性抑制,并提高Th1的表达,使Th1/Th2比例回归到生理状态,进而消除过敏性炎症因子对气道的损伤,降低气道高反应。同时也提示了通过转染半氧合酶1基因的脂肪干细胞具有增强脂肪干细胞抗炎及调节Th1/Th2动态平衡的能力[18]。这和Cho等[10]的研究结果一致,在小鼠过敏性鼻炎的哮喘模型中发现,通过纠正Th2反应过度表达而增强Th1反应表达可以减轻嗜酸性粒细胞性气道炎症。虽然脂肪干细胞是如何调节Th1/Th2比例回归正常平衡的机制尚有不明确之处,但已有的研究表明存在以下可能的机制。在Th2细胞介导的哮喘等过敏性气道疾病中,发现间充质干细胞首先探测到以白细胞介素4、白细胞介素5、白细胞介素13上升的炎症微环境,白细胞介素4、白细胞介素13结合于间充质干细胞上的白细胞介素4受体,激活信号传导及转录激活因子6(signal transducers and activators of transcription 6,STAT6)通路,这相应地激发细胞产生大量的转化生长因子β1,然后结合于免疫细胞上的转化生长因子β1受体,导致白细胞介素4产生下降,最终使免疫失衡恢复到免疫平衡状态[19]。也有研究认为骨髓来源的间充质干细胞通过干扰素γ途径来抑制Th2细胞介导炎症反应,不管是在以Th1细胞占优势的57BL/6还是以Th2细胞炎症反应为主的BALB/c小鼠,体内的间充质干细胞能上调Th1细胞免疫应答,而干扰素γ的产生能够选择性抑制Th2细胞的功能,恢复Th1/Th2平衡状态[20]。 2.1.3 脂肪干细胞通过直接或间接的方式调节免疫细胞降低气道炎症 如前所诉,脂肪干细胞可以共享其他间充质干细胞的一系列生物学特性,这其中也包括抑制免疫反应和调节炎症的能力[21]。研究认为,间充质干细胞通过对T细胞的有丝分裂的干扰而终止其增殖,进而抑制其对变应原的免疫应答。这种与免疫细胞间的免疫应答可能是包括脂肪干细胞在内的间充质干细胞发挥免疫抑制效应的重要因素之一[22]。有研究认为,间充质干细胞可能需要与T细胞直接接触才能发挥免疫抑制效应[23],但也有学者认为这种细胞间的直接接触并不是必需的[24],然而,彼此若有条件进行直接接触可以增强其对T细胞的免疫抑制。 除了可能存在的直接接触依赖机制发挥了免疫抑制作用外,间充质干细胞参与到T细胞的免疫抑制还依赖于可溶性的细胞因子。间充质干细胞分泌的前列腺素E2和转化生长因子β可能参与抑制T细胞的增殖[25]。前列腺素E2可以促进Th1细胞的分化和扩大Th17细胞群来发挥免疫刺激作用。前列腺素E2还可以影响诸多组织和免疫系统,在免疫系统中,对前列腺素E2产生免疫抑制效应最明显的是T细胞和肥大细胞。前列腺素E2能够预防T细胞的增殖和抑制肿瘤坏死因子α和白细胞介素12的产生,同时,其还可以下调肥大细胞表面组织相容性复合物Ⅱ类的表达,减轻炎症反应[26]。间充质干细胞分泌的前列腺素E2,吲哚酸2,3加双氧酶还可以抑制了B细胞增殖和抗体产生,但是间充质干细胞只有在干扰素γ参与的情况下才能发挥抑制B细胞增殖的作用[27-28]。研究表明,干扰素γ通过诱导前列腺素E2、肝细胞生长因子和吲哚酸2,3加双氧酶从间充质干细胞的释放在免疫抑制中起着积极作用[24,29]。吲哚酸2,3加双氧酶是一种血红素,存在于细胞内,其含有的酶具有催化色氨酸分解代谢为犬尿氨酸的能力。由于色氨酸的摄入对细胞增殖是十分重要的,色氨酸消耗和犬尿氨酸的合成增多能够抑制免疫细胞的生长和功能[30]。干扰素γ可以诱导吲哚酸2,3加双氧酶产生活性,并发现吲哚酸2,3加双氧酶可能和前列腺素2通过协同作用来抑制NK细胞的增殖。在Cho等[10]的研究中,静脉给予的脂肪干细胞抑制变应原激发的脾细胞中白细胞介素4和白细胞介素5产生,但干扰素γ产生增多。综合来看,脂肪干细胞可以通过一系列的可溶性因子来抑制免疫细胞的免疫应答,减轻甚至终止气道炎症炎性损伤。 另外,脂肪干细胞可以通过上调CD4+CD25+调节性T细胞来抑制气道炎症。CD4+CD25+调节性T细胞的功能降低、数量下降是哮喘发生发展的重要机制之一,气道炎症时,CD4+CD25+调节性T细胞通过分泌白细胞介素10、转化生长因子或和免疫细胞间相互作用,使抗原提呈细胞保持不成熟状态,而不成熟的抗原提呈细胞又可抑制Th2免疫反应或诱导T细胞无能。在肺内,接触过致敏原后的树突状细胞也可产生白细胞介素10,并刺激产生大量的CD4+CD25+调节性T细胞。转化生长因子和白细胞介素10可有效地抑制炎症反应,减轻支气管气道高反应,控制哮喘症状[31]。总之,脂肪干细胞能抑制促炎细胞因子的产生,同时能够刺激抗炎性细胞因子白细胞介素10、半氧合酶1,这些因子能够诱导形成CD4+ CD25+调节性T细胞从而使其数量和比例增加,继而加强降低气道炎症及气道高反应的作用[32]。 2.2 脂肪干细胞在延缓气道重塑中的作用 2.2.1 脂肪干细胞诱导分化肺泡上皮修复气道炎性损伤 研究表明,肺脏在支气管、终末细支气管、细支气管和肺泡等肺组织中也含有干细胞,例如导管细胞,基底细胞,克拉拉细胞和肺泡Ⅱ型细胞[33-35]。尽管肺干细胞具有修复和重建肺组织的能力,但会随着年龄和损伤严重程度的增加而减少[35]。虽然气道壁的细胞能够在正常条件下再生和修复气道的损伤,但如果损伤的严重程度超过其自身的修复能力,就会发生包括上皮下基膜纤维化、上皮杯状细胞增生、基底膜增厚、气道壁增厚、细胞外基质沉积、血管增生以及气道平滑肌细胞的增生和肥大等病理变化,称为气道重塑[36]。研究表明,在过敏性气道疾病的小鼠模型中,通过小鼠尾静脉移植间充质干细胞后,其可以大量募集和定植在肺部及发生炎症性反应的鼻粘膜等炎症反应部位,这为间充质干细胞静脉移植治疗肺部疾病提供了良好的前提条件[37]。一些研究表明,以脂肪干细胞为代表的成体干细胞能够分化为肺上皮细胞[38-39]。虽然有学者的研究否认了骨髓来源的间充质干细胞具有再生修复肺泡上皮的能力[40]。但Sueblinvong等[41]的研究证实了人脐带血来源的间充质干细胞在体外诱导培养可以得到气道上皮细胞,并且通过尾静脉移植到小鼠体内可定植在气道上皮并表达气道上皮细胞表型,这说明其参与到气道的损伤恢复。更有研究表明,静脉注射外源性的小鼠骨髓间充质干细胞后,在小鼠肺损伤模型中可发现其肺组织中追踪到外源性的间充质干细胞,证实移植后的受体损伤肺组织中,间充质干细胞可转化为肺泡Ⅱ型和Ⅰ型细胞,减轻肺组织损伤并增强肺上皮组织修复[42]。支气管哮喘同样存在气道慢性炎症造成的气道上皮细胞损伤、脱落,管壁塌陷,上皮下纤维化,间充质干细胞在损伤肺组织的定植及分化作用从理论上为脂肪干细胞治疗哮喘提供了依据。 2.2.2 脂肪干细胞可抑制炎症并触发修复性生长因子延缓哮喘气道重塑 目前,许多研究人员认为,脂肪干细胞促进组织和器官的细胞再生,主要通过释放细胞因子和生长因子[43]。脂肪干细胞通过分泌刺激正常组织功能恢复或减少其损伤的细胞因子和生长因子促进组织再生。Salgado等[44]认为脂肪干细胞分泌的分子对中枢神经系统、免疫系统、心脏、肌肉甚至一般细胞的活力都有积极的影响。脂肪干细胞产生的细胞因子包括血管内皮生长因子、粒细胞/巨噬细胞集落刺激因子、细胞衍生的基质因子1α、肝细胞生长因子、转化生长因子β和成纤维细胞生长因子2,这也是为什么脂肪干细胞具有血管生成的属性和诱导组织新血管形成的能力[45-46]。还有证据表明,由脂肪干细胞分泌的生长因子刺激成纤维细胞和角质形成细胞的生长[47]。由于炎症刺激脂肪组织中的脂肪干细胞,导致其血管内皮生长因子、肝细胞生长因子、胰岛素样生长因子1等血管生成因子和粒细胞集落刺激因子、巨噬细胞集落刺激因子、白细胞介素6、肿瘤坏死因子α等造血或炎症因子[48]。基于以上观点,推测脂肪干细胞可能通过旁分泌作用抑制成纤维细胞的增生,减少瘢痕组织的形成,促进血管再生,修复组织损伤,发挥气道重建的作用。 2.3 脂肪干细胞治疗的安全性问题 脂肪组织中存在高含量的脂肪干细胞并且生长迅速不需要长期体外培养,这减少了染色体异常的风险。这些性质使脂肪干细胞在用于治疗相关疾病的有力手段[49-50]。然而,有个非常值得重视的问题是,实验施用的脂肪干细胞是否分化成不希望得到的细胞,例如肿瘤细胞。目前脂肪干细胞的研究主要是以动物实验为主,涉及临床试验较少,中国对于干细胞的管理实行限制,相关临床试验开展得更少[51]。据报道,有些研究表明移植的脂肪干细胞可能有利于肿瘤生长[52]。一些在原发性肿瘤细胞上进行的研究得出更进一步的结论,即在非有丝分裂活性的活性肿瘤细胞存在下的条件下,脂肪干细胞可以诱导肿瘤细胞生长[53]。有研究显示,脂肪干细胞在长期培养中比骨髓来源的间充质干细胞表现出更高的遗传稳定性[54]。总而言之,脂肪干细胞在用于移植及治疗方面出现恶性分化的报道极少,而这些罕见现象还未经充分研究证实。并且在动物实验研究中发生肿瘤转化的概率也不高,更没有发现恶性肿瘤的倾向。所以,就目前来看,脂肪干细胞用于治疗哮喘及其他相关疾病可能是安全的,但是为了预防不希望发生的后果,在任何基于脂肪干细胞的治疗之前进行基因组的详细分析似乎是很有必要的。"
[1] Al-Sawalha NA, Knoll BJ. Statins in Asthma: A Closer Look into the Pharmacological Mechanism of Action. Pharmacology. 2016;98(5-6):279-283. [2] 王长征.支气管哮喘表型[J].内科理论与实践,2011,6(2): 102-105.[3] Bajek A, Gurtowska N, Olkowska J, et al. Adipose-Derived Stem Cells as a Tool in Cell-Based Therapies. Arch Immunol Ther Exp (Warsz). 2016;64(6):443-454.[4] 赵娜.脂肪干细胞诱导分化的现状及前景[J].中国组织工程研究,2015,19(6):969-974.[5] Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12): 4279-4295.[6] Zuk PA. The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell. 2010;21(11):1783-1787. [7] Braunstahl GJ, Hellings PW. Allergic rhinitis and asthma: the link further unraveled. Curr Opin Pulm Med. 2003;9(1):46-51. [8] Baer PC, Kuçi S, Krause M, et al. Comprehensive phenotypic characterization of human adipose-derived stromal/stem cells and their subsets by a high throughput technology. Stem Cells Dev. 2013;22(2):330-339.[9] Guo M, Sun Z, Sun QY, et al. A modified haploidentical nonmyeloablative transplantation without T cell depletion for high-risk acute leukemia: successful engraftment and mild GVHD. Biol Blood Marrow Transplant. 2009;15(8):930-937.[10] Cho KS, Park HK, Park HY, et al. IFATS collection: Immunomodulatory effects of adipose tissue-derived stem cells in an allergic rhinitis mouse model. Stem Cells. 2009; 27(1):259-265. [11] Cho KS, Roh HJ. Immunomodulatory effects of adipose- derived stem cells in airway allergic diseases. Curr Stem Cell Res Ther. 2010;5(2):111-115.[12] Salcedo R, Oppenheim JJ. Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation. 2003; 10(3-4):359-370.[13] Spring H, Schüler T, Arnold B, et al. Chemokines direct endothelial progenitors into tumor neovessels. Proc Natl Acad Sci U S A. 2005;102(50):18111-18116. [14] Sordi V, Malosio ML, Marchesi F, et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood. 2005;106(2):419-427.[15] Firinci F, Karaman M, Baran Y, et al. Mesenchymal stem cells ameliorate the histopathological changes in a murine model of chronic asthma. Int Immunopharmacol. 2011;11(8):1120-1126. [16] Rüster B, Göttig S, Ludwig RJ, et al. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood. 2006 D;108(12):3938-3944. [17] Shi M, Li J, Liao L, et al. Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica. 2007; 92(7):897-904.[18] 朱灿红.HO-1基因转染脂肪间充质干细胞在支气管哮喘中的作用及机制研究[D].苏州:苏州大学,2014.[19] Crop MJ, Baan CC, Korevaar SS, et al. Human adipose tissue-derived mesenchymal stem cells induce explosive T-cell proliferation. Stem Cells Dev. 2010;19(12):1843-1853.[20] Tuettenberg A, Becker C, Correll A, et al. Immune regulation by dendritic cells and T cells--basic science, diagnostic, and clinical application. Clin Lab. 2011;57(1-2):1-12.[21] Uccelli A, Moretta L, Pistoia V. Immunoregulatory function of mesenchymal stem cells. Eur J Immunol. 2006;36(10): 2566-2573.[22] Devine SM, Cobbs C, Jennings M, et al. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood. 2003;101(8): 2999-3001. [23] Nemeth K, Keane-Myers A, Brown JM, et al. Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc Natl Acad Sci U S A. 2010;107(12):5652-5657. [24] Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005; 105(4):1815-1822. [25] Duffy MM, Ritter T, Ceredig R, et al. Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Res Ther. 2011; 2(4):34.[26] Windmolders S, De Boeck A, Koninckx R, et al. Mesenchymal stem cell secreted platelet derived growth factor exerts a pro-migratory effect on resident Cardiac Atrial appendage Stem Cells. J Mol Cell Cardiol. 2014;66:177-188. [27] Serikov VB, Popov B, Mikhailov VM, et al. Evidence of temporary airway epithelial repopulation and rare clonal formation by BM-derived cells following naphthalene injury in mice. Anat Rec (Hoboken). 2007;290(9):1033-1045.[28] Krampera M, Cosmi L, Angeli R, et al. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells. 2006; 24(2): 386-398.[29] Ryan JM, Barry F, Murphy JM, et al. Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol. 2007;149(2):353-363.[30] Deuse T, Stubbendorff M, Tang-Quan K, et al. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant. 2011;20(5):655-667.[31] Yüksek M, Erol F, Gülo?lu D, et al. Regulatory T cell levels in children with asthma. Turk J Pediatr. 2011;53(5):532-536.[32] Gonzalez-Rey E, Gonzalez MA, Varela N, et al. Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis. 2010; 69(1):241-248.[33] Reddy R, Buckley S, Doerken M, et al. Isolation of a putative progenitor subpopulation of alveolar epithelial type 2 cells. Am J Physiol Lung Cell Mol Physiol. 2004;286(4):L658-667.[34] Sato K, Ozaki K, Mori M, et al. Mesenchymal stromal cells for graft-versus-host disease : basic aspects and clinical outcomes. J Clin Exp Hematop. 2010;50(2):79-89.[35] Snyder JC, Teisanu RM, Stripp BR. Endogenous lung stem cells and contribution to disease. J Pathol. 2009;217(2): 254-264.[36] Bergeron C, Tulic MK, Hamid Q. Tools used to measure airway remodelling in research. Eur Respir J. 2007;29(3): 596-604.[37] Fischer UM, Harting MT, Jimenez F, et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 2009;18(5): 683-692.[38] Rippon HJ, Polak JM, Qin M, et al. Derivation of distal lung epithelial progenitors from murine embryonic stem cells using a novel three-step differentiation protocol. Stem Cells. 2006; 24(5):1389-1398.[39] Coraux C, Nawrocki-Raby B, Hinnrasky J, et al. Embryonic stem cells generate airway epithelial tissue. Am J Respir Cell Mol Biol. 2005;32(2):87-92. [40] Chang JC, Summer R, Sun X, et al. Evidence that bone marrow cells do not contribute to the alveolar epithelium. Am J Respir Cell Mol Biol. 2005;33(4):335-342.[41] Sueblinvong V, Loi R, Eisenhauer PL, et al. Derivation of lung epithelium from human cord blood-derived mesenchymal stem cells. Am J Respir Crit Care Med. 2008;177(7):701-711.[42] Mac Sweeney R, McAuley DF. Mesenchymal stem cell therapy in acute lung injury: is it time for a clinical trial? Thorax. 2012;67(6):475-476.[43] Gimble JM, Bunnell BA, Guilak F. Human adipose-derived cells: an update on the transition to clinical translation. Regen Med. 2012;7(2):225-235.[44] Salgado AJ, Reis RL, Sousa NJ, et al. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther. 2010;5(2): 103-110.[45] Sterodimas A, de Faria J, Nicaretta B, et al. Tissue engineering with adipose-derived stem cells (ADSCs): current and future applications. J Plast Reconstr Aesthet Surg. 2010; 63(11):1886-1892.[46] Gir P, Oni G, Brown SA, et al. Human adipose stem cells: current clinical applications. Plast Reconstr Surg. 2012;129(6): 1277-1290. [47] Hong SJ, Jia SX, Xie P, et al. Topically delivered adipose derived stem cells show an activated-fibroblast phenotype and enhance granulation tissue formation in skin wounds. PLoS One. 2013;8(1):e55640.[48] Kilroy GE, Foster SJ, Wu X, et al. Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol. 2007;212(3):702-709.[49] Baptista LS, Silva KR, Borojevic R. Obesity and weight loss could alter the properties of adipose stem cells? World J Stem Cells. 2015;7(1):165-173.[50] Uzbas F, May ID, Parisi AM, et al. Molecular physiognomies and applications of adipose-derived stem cells. Stem Cell Rev. 2015;11(2):298-308. [51] 陈犹白,陈聪慧,Qixu Zhang,等.脂肪干细胞分离?纯化和保存:研究进展与未来方向[J].中国组织工程研究,2016,20(10): 1508-1520.[52] Prantl L, Muehlberg F, Navone NM, et al. Adipose tissue-derived stem cells promote prostate tumor growth. Prostate. 2010;70(15):1709-1715.[53] Zimmerlin L, Donnenberg AD, Rubin JP, et al. Regenerative therapy and cancer: in vitro and in vivo studies of the interaction between adipose-derived stem cells and breast cancer cells from clinical isolates. Tissue Eng Part A. 2011; 17(1-2):93-106.[54] Neri S, Bourin P, Peyrafitte JA, et al. Human adipose stromal cells (ASC) for the regeneration of injured cartilage display genetic stability after in vitro culture expansion. PLoS One. 2013;8(10):e77895. |
[1] | Yao Xiaoling, Peng Jiancheng, Xu Yuerong, Yang Zhidong, Zhang Shuncong. Variable-angle zero-notch anterior interbody fusion system in the treatment of cervical spondylotic myelopathy: 30-month follow-up [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1377-1382. |
[2] | Zhang Jinglin, Leng Min, Zhu Boheng, Wang Hong. Mechanism and application of stem cell-derived exosomes in promoting diabetic wound healing [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1113-1118. |
[3] | An Weizheng, He Xiao, Ren Shuai, Liu Jianyu. Potential of muscle-derived stem cells in peripheral nerve regeneration [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1130-1136. |
[4] | He Yunying, Li Lingjie, Zhang Shuqi, Li Yuzhou, Yang Sheng, Ji Ping. Method of constructing cell spheroids based on agarose and polyacrylic molds [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 553-559. |
[5] | He Guanyu, Xu Baoshan, Du Lilong, Zhang Tongxing, Huo Zhenxin, Shen Li. Biomimetic orientated microchannel annulus fibrosus scaffold constructed by silk fibroin [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 560-566. |
[6] | Chen Xiaoxu, Luo Yaxin, Bi Haoran, Yang Kun. Preparation and application of acellular scaffold in tissue engineering and regenerative medicine [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 591-596. |
[7] | Kang Kunlong, Wang Xintao. Research hotspot of biological scaffold materials promoting osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 597-603. |
[8] | Shen Jiahua, Fu Yong. Application of graphene-based nanomaterials in stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 604-609. |
[9] | Zhang Tong, Cai Jinchi, Yuan Zhifa, Zhao Haiyan, Han Xingwen, Wang Wenji. Hyaluronic acid-based composite hydrogel in cartilage injury caused by osteoarthritis: application and mechanism [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 617-625. |
[10] | Li Hui, Chen Lianglong. Application and characteristics of bone graft materials in the treatment of spinal tuberculosis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 626-630. |
[11] | Gao Cangjian, Yang Zhen, Liu Shuyun, Li Hao, Fu Liwei, Zhao Tianyuan, Chen Wei, Liao Zhiyao, Li Pinxue, Sui Xiang, Guo Quanyi. Electrospinning for rotator cuff repair [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 637-642. |
[12] | Guan Jian, Jia Yanfei, Zhang Baoxin , Zhao Guozhong. Application of 4D bioprinting in tissue engineering [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(3): 446-455. |
[13] | Liu Jiali, Suo Hairui, Yang Han, Wang Ling, Xu Mingen. Influence of lay-down angles on mechanical properties of three-dimensional printed polycaprolactone scaffolds [J]. Chinese Journal of Tissue Engineering Research, 2022, 10(16): 2612-2617. |
[14] | Huang Bo, Chen Mingxue, Peng Liqing, Luo Xujiang, Li Huo, Wang Hao, Tian Qinyu, Lu Xiaobo, Liu Shuyun, Guo Quanyi . Fabrication and biocompatibility of injectable gelatin-methacryloyl/cartilage-derived matrix particles composite hydrogel scaffold [J]. Chinese Journal of Tissue Engineering Research, 2022, 10(16): 2600-2606. |
[15] | Fang Xiaoyang, Tang Tian, Wang Nan, Qian Yuzhang, Xie Lin. Repair and regenerative therapies of the annulus fibrosus [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(10): 1582-1587. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||