Chinese Journal of Tissue Engineering Research ›› 2017, Vol. 21 ›› Issue (13): 2127-2132.doi: 10.3969/j.issn.2095-4344.2017.13.026
Tang Ming-mei, Zhao Jian-jun, Cao Zhi-min, Wen Qiang, He Yue-juan, Chen Ling
Revised:
2017-02-12
Online:
2017-05-08
Published:
2017-06-09
Contact:
Chen Ling, Professor, Chief physician, Master’s supervisor, Second Department of Respiratory Medicine, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
About author:
Tang Ming-mei, Studying for master’s degree, Second Department of Respiratory Medicine, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, Guizhou Province, China
Supported by:
the Scientific Research Plan Project of Guizhou Province, No. [2015]3050
CLC Number:
Tang Ming-mei, Zhao Jian-jun, Cao Zhi-min, Wen Qiang, He Yue-juan, Chen Ling. A review of human amniotic mesenchymal stem cells in the treatment of acute lung injury[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(13): 2127-2132.
2.1 hAMSCs的低免疫原性 hAMSCs弱表达HLA-A、B、C,不表达免疫因子HLA-DR、CD14、β2-微球蛋白等,不表达造血细胞特异性抗原CD45、CD14、CD11c和CD34,同时也不表达共刺激分子 CD40L、CD80、CD83、CD86等[10,18-19],表明hAMSCs和其他干细胞一样具有低免疫原性,而且具有比骨髓间充质干细胞更低的免疫原性等优势[20]。方宁等[21]在大鼠侧脑室注射hAMSCs,未使用免疫抑制剂的情况下在脑和脊髓组织中见hAMSCs存活。强勇等[22]用hAMSCs移植治疗犬体外循环再灌注肺损伤模型中亦未出现强烈的免疫排斥反应。周洪龙等[23]将hAMSCs移植入SD大鼠体内,在未使用免疫抑制剂的情况下细胞存活至少28 d,说明hAMSCs具备良好的免疫耐受能力。李佳丽[24]通过动物实验证明hAMSCs可通过削弱NK细胞活性、抑制CD14+单核细胞功能来降低移植物抗宿主反应。另有研究发现hAMSCs 可抑制T淋巴细胞增殖,异种和同种异体之间羊膜组织移植治疗烧伤、角膜重建等均可避免免疫排斥反应的发生[25-26]。张新等[27]筛选33例初发1型糖尿病患者随机分为对照组和治疗组,对照组接受常规治疗,治疗组接受hAMSCs移植联合常规治疗,分别在治疗12,24个月后监测各指标,发现hAMSCs移植治疗1型糖尿病安全性好,且疗效确切,表明hAMSCs移植具有较好的免疫耐受性和较高的安全性,为其移植治疗急性肺损伤奠定了基础。 2.2 hAMSCs的归巢及定植 1983年,Gallatin等首次报道血源性淋巴细胞能选择性地迁移至二级淋巴器官,这个过程被他们定义为“归巢”[18]。随着干细胞研究的出现,“归巢”概念被引申至多种干细胞,它是指自体或外源性间充质干细胞在炎症递质、趋化因子等多种因素的作用下,选择性地迁移至靶向组织并定植的过程。hAMSCs移植治疗组织损伤,首先要能够迁移至受损组织,才能进一步发挥免疫调节和修复作用。研究显示,hAMSCs经尾静脉移植到四氯化碳诱导的肝损伤小鼠模型中,能够定植到受损的肝脏[28]。hAMSCs经侧脑室移植到实验性自身免疫性脑脊髓炎大鼠体内后,在大鼠脑和脊髓组织可见hAMSCs存活[21]。由此可见,hAMSCs具有定向归巢的能力。 在急性肺损伤过程中,干细胞归巢受损伤部位,炎症反应驱动,一方面由于炎症反应导致血流速度变化,从而显著增加了被动捕获的概率[29];另一方面,有研究表明损伤组织和炎性细胞释放的炎症因子(肿瘤坏死因子α、白细胞介素1α、白细胞介素1β、白细胞介素6、γ干扰素)和趋化因子(CCL5、CCL20、CXCL3等)能够促进内外源性间充质干细胞向损伤部位迁移[30],张涛等[31]的研究发现,水通道蛋白1也具有促进hAMSCs迁移的作用。有学者通过尾静脉注射hAMSCs干预OVA致敏和雾化激发BALB/c小鼠哮喘模型,证明hAMSCs能定向“归巢”至受损肺组织[32]。但也有实验发现hAMSCs治疗急性肺损伤时,定植于受损肺组织的hAMSCs十分稀少[33],可能还有其他机制参与了肺损伤的修复。 2.3 hAMSCs的免疫调节作用 间充质干细胞可通过减少抗体的产生来发挥免疫调节作用,其机制为抑制B细胞转化为成熟的浆细胞[15]。间充质干细胞也能通过降低NK细胞的细胞毒性作用,减弱树突状细胞的抗原提呈作用达到免疫调节[34]。Krasnodembskaya等[35]发现间充质干细胞能够分泌对革兰阴性菌有清除作用的抗菌肽LL-37。hAMSCs作为一种特殊来源的干细胞,同样具备免疫调节作用。肖瑶等[36]研究发现hAMSCs可下调Th1、Th2、Th17、CTL1、 CTL2和NKT亚群而上调Foxp3+Treg细胞。Magatti等[25]的研究表明,将hAMSCs与单个核细胞或纯化的T细胞共培养,可抑制同种异体混合淋巴细胞反应诱导的淋巴细胞增殖。李佳丽[24]在脑脊髓炎小鼠模型中也发现hAMSCs能够抑制CD14+单核细胞分泌细胞因子,从而降低小鼠的炎症反应。 在急性肺损伤过程中,间充质干细胞被损伤的肺组织释放促炎因子激活并旁分泌前列腺素E2、白细胞介素8、可溶性人类白细胞抗原G5等细胞因子,从而抑制中性粒细胞、巨噬细胞等免疫细胞的迁移及树突状细胞的成熟,减少NK细胞、B淋巴细胞和T淋巴细胞的增殖活化。转化生长因子β及前列腺素E2还可促进间充质干细胞上调抗炎因子白细胞介素4、白细胞介素10、白细胞介素13 的表达和下调促炎因子肿瘤坏死因子α、白细胞介素1β、白细胞介素6、白细胞介素1β干扰素等的表达,减轻肺泡炎性损伤[35-39]。有研究发现,hAMSCs移植治疗体外循环缺血再灌注相关肺损伤时,能够下调促炎因子肿瘤坏死因子α、白细胞介素8,降低基质金属蛋白酶9水平,上调抗炎因子白细胞介素10水平,抑制肺组织 NF-κB 活化而减轻肺损伤[22]。Li等[40]发现hAMSCs能上调白细胞介素10(Th2细胞因子)的水平并下调白细胞介素2和干扰素γ的水平。Hao等[41]报道hAMSCs能表达各种抗血管生成和抗炎蛋白例如白细胞介素1受体拮抗剂、组织金属蛋白酶抑制剂1、2、3、4和白细胞介素10。此外,Cargnoni等[42]仅通过输注培养hAMSCs的上清液来治疗博来霉素诱导的肺纤维化,不需移植hAMSCs却同样具有治疗作用,这一发现为干细胞的旁分泌免疫调节作用可减轻肺损伤提供了有力证据[43]。 2.4 hAMSCs的多向分化潜能和修复作用 大量研究报道hAMSCs具有向3个胚层来源的组织细胞分化的潜能,体外经特定条件诱导可向外胚层(神经)、中胚层(骨骼肌、心肌、内皮、脂肪)、内胚层(胰腺) 分化。丛珊等[16]在体外特定条件下将hAMSCs成功诱导分化为成脂、成骨、神经和胰岛样细胞。李豫皖等[44]通过向含有成骨、成软骨及成脂诱导液培养基中加入hAMSCs,结果显示hAMSCs具有向成骨细胞、软骨细胞和脂肪细胞分化的潜能。金瑛等[45]研究发现hAMSCs经过转化生长因子β1、碱性成纤维细胞生长因子及透明质酸单独或联合诱导后,均可向韧带细胞分化。还有研究证实间充质干细胞可以分化成为肌肉组织、角膜上皮细胞、心肌细胞、肝细胞、肺和气管上皮细胞、肾小管上皮细胞、神经细胞等,从而为组织修复提供细胞来源[10]。已有学者在动物实验用其进行受损的角膜、肺、心肌[46]、神经和皮肤等组织的干细胞移植和组织工程重建。更有研究表明,hAMSCs可定位修复四氯化碳诱导的肝损伤的肝细胞,还可修复心肌细胞治疗心肌梗死[47-48]。 肺毛细血管内皮细胞及肺泡上皮细胞在急性肺损伤过程中会发生坏死和凋亡,而间充质干细胞可以辅助修复或归巢致损伤部位定向分化并替代凋亡、坏死的细胞。Lam等[49]将兔外周血分离的间充质干细胞在体外特定条件下培养1周后,可见内皮细胞表型。多项研究发现,在博来霉素诱导的小鼠肺损伤模型中经尾静脉注入间充质干细胞,间充质干细胞可迁移致受损的肺组织,并且分化为肺血管内皮细胞、Ⅰ型或Ⅱ型肺泡上皮细胞,其中有学者检测到Ⅰ型肺泡上皮细胞的标志物Tlα 蛋白(一种膜糖蛋白)和水通道蛋白5[50-51]。研究表明间充质干细胞发挥促血管内皮细胞增殖、延长内皮细胞的寿命作用,并诱导内皮细胞增殖、分化、生长和迁移、诱导血管生成及增强血管通透性等,主要是通过表达和旁分泌血管生成素1、血管内皮生长因子、色素上皮衍生因子等细胞因子来实现[52]。还有研究表明,急性肺损伤时,间充质干细胞可通过上调Na-K ATP泵的活性增强肺泡液体的转运,从而减轻肺水肿,降低肺损伤程度[53]。据报道hAMSCs可分泌血管内皮生长因子和血管假性血友病因子及与细胞增殖、分化有关的多种生长因子参与受损组织修复[54]。国外学者报道hAMSCs移植应用于包括心肌缺血在内的多种缺血性疾病,能够分泌多种促血管再生因子,具有强大的促血管再生能力[55]。目前hAMSCs治疗急性肺损伤的研究较少,但是基于其多种干细胞特性,猜想它也可能和其他来源的干细胞一样在急性肺损伤过程中具有分化和修复能力。 2.5 hAMSCs的抗氧化和抗细胞凋亡作用 在急性肺损伤病理生理过程中,自由基产生与灭活平衡受到破坏,自由基作为一种重要的介质参与并加重肺组织损伤。间充质干细胞具有抗氧化和抗细胞凋亡作用[56],Lam等[49]研究发现用内皮祖细胞可能通过上调HO-1、MnSOD表达来重建自由基产生及灭活平衡,提高肺组织抗氧化能力,达到减轻肺损伤的目的。张继峰等[56]通过动物模型也发现间充质干细胞移植可明显提高大鼠肺脏组织的抗氧化能力,延缓肺脏组织结构和功能衰老进程。 多种细胞信号参与了细胞凋亡的调控,其中有两个最主要的信号传导通路:内在细胞死亡通路及外在细胞死亡通路,凋亡通路的启动涉及通过增加钙离子的浓度致线粒体的凋亡,从而诱导细胞表达调控细胞凋亡的细胞因子。Zheng[57]及其同事通过LPS诱导的小鼠急性肺损伤模型证实,间充质干细胞治疗能够有效增强细胞生存能力并且减少细胞凋亡。Zhang等[58]研究发现间充质干细胞与血管紧张素Ⅱ协同作用于急性肺损伤小鼠,肺组织Bax、Bak、P53、Caspase-12等诱发细胞凋亡的细胞因子表达明显减少;邰文琳等[59]也发现当LPS预处理的A549细胞与hBMMSCs混合培养时,不仅能抑制促凋亡蛋白Caspase-3和bax蛋白表达,还能促进A549细胞抗凋亡蛋白 Bcl-2 表达;Mei等[60]在LPS诱导的小鼠ARDS模型中发现,肺组织匀浆中促凋亡蛋白Caspase3和Caspase7的活性明显增高,而间充质干细胞治疗能够明显降低Caspase3、Caspase7的活性;还有研究显示,骨髓间充质干细胞可降低肺组织肿瘤坏死因子含量,而肿瘤坏死因子可以与肿瘤坏死因子受体结合,直接启动程序性细胞死亡—凋亡,肿瘤坏死因子还可通过其他途径间接启动凋亡,由此可推断间充质干细胞可抑制细胞凋亡。"
[1] 马李杰,李王平,金发光.急性肺损伤/急性呼吸窘迫综合征发病机制的研究进展[J].中华肺部疾病杂志:电子版,2013,6(1):49-52.[2] 汲海燕.急性肺损伤/急性呼吸窘迫综合征发病机制的研究进展[J].吉林医学,2014,35(29): 6578-6579.[3] Kangelaris KN,Sapru A,Calfee CS,et al.The association between a Darc gene polymorphism and clinical outcomes in African American patients with acute lung injury.Chest.2012; 141(5):1160-1169.[4] 高冬娜.急性肺损伤研究进展[J].中国急救医学,2008,28(1):72-76.[5] Villar J,Kacmarek RM,Perez-Mendez L,et al.A high positive end-expiratory pressure,low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome :a randomize,controlled trial.Crit Care Med.2006; 34(5):1311-1318.[6] Fuller BM,Molir NM,Drewry AM,et al.Lower tidal volume at initiation of mechanical ventilation may reduce progression to acute respiratory distress syndrome: a systematic review. Crit Care.2013;17(1):1-12.[7] 白春学.应用连续性血液净化救治急性呼吸窘迫综合征[J].肾脏病与透析肾移植杂志, 2006,15(2):137-138.[8] Ranieri VM,Thompson BT,Barie PS,et al.Drotrecogin alfa (activated) in adults with septic shock.N Engl J Med.2012; 366(22):2055-64.[9] Wilson JG,Liu KD,Zhuo H,et al.Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial.Lancet Respir Med.2014;3(1):24-32.[10] 王新党,张建军,叶奎.人羊膜间充质干细胞移植修复肝脏缺血-再灌注损伤[J].中国组织工程研究,2016,20(45):6788-6794.[11] 周文然,李新,王文波,等.人羊膜间充质干细胞生物学特征及向多巴胺能神经元样细胞的分化[J].中国组织工程研究, 2014, 18(23):3682-3690.[12] Sensebe L, Krampera M, Schrezenmeier H, et al. Mesenchymal stem cells for clinical application.Vox Sang. 2010;98(2):93-107.[13] 王立宾,祝贺,郝捷,等.干细胞与再生医学研究进展[J].生物工程学报,2015, 31(6):871-879.[14] 杨国宏,张春军,曹艳丽,等.骨髓基质干细胞诱导分化为神经细胞的研究进展[J].中国当代医药,2014,21(33):191-193.[15] Siegel G,Schafer R,Dazzi F.The immunosuppressive properties of mesenchymal stem cells. Transplantation. 2009;87(9 Suppl):S45-49.[16] 丛姗,宋瑾,张惠娟,等.人羊膜间充质干细胞(hAMSCs)的分离、体外培养及诱导分化[J].农业生物技术学报,2015,23(1):20-31.[17] 洪佳琼,高雅,宋洁,等.人羊膜间充质干细胞与骨髓间充质干细胞的生物学特性及免疫抑制作用的比较[J].中国实验血液学杂志, 2016,24(3):858-864.[18] Zhang H,Zhang B,Tao Y,et al.lsolation and characterization of mesenchymal stem cells from whole human umbilical cord applying a single enzyme approach.Cell Biochem Funct.2012; 30(8):643-649.[19] Glem?ait? M,Navakauskien? R.Osteogenic Differentiation of Human Amniotic Fluid Mesenchymal Stem Cells Is Determined by Epigenetic Changes.Stem Cells Int.2016;2016:1-10.[20] Soncini M,Vertua E,Gibelli L,et al.Isolation and characterizationof mesenchymal cells from human fetal membranes.J Tissue EngRegen Med.2007;1(4):296-305.[21] 方宁,李丹,余丽梅,等.人羊膜间充质干细胞对大鼠实验性自身免疫性脑脊髓炎的疗效及免疫调节作用[J].免疫学杂志,2014, 30(1): 6-12.[22] 强勇,梁贵友,余丽梅,等.人羊膜间充质干细胞移植减轻体外循环再灌注肺损伤[J].中国组织工程研究,2016,20(1):70-77.[23] 周洪龙, 张学军, 张茂营,等.移植人羊膜间充质干细胞促进脊髓损伤大鼠神经功能恢复[J].中华神经创伤外科电子杂志,2016, 2(6):355-360.[24] 李佳丽.羊膜间充质干细胞抑制NK细胞的细胞毒活性和单核细胞的功能[J].免疫学杂志,2016,32(12):1096-1100.[25] Magatti M,De Munari S,Vertua E,et al.Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities.Stem Cells.2008; 26(1):182-192.[26] Parolini O,Alviano F,Bagnara GP,et al.Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells.Stem Cells.2008;26(2):300-311.[27] 张新,徐亮,周玉红,等.异体羊膜间充质干细胞移植治疗初发1型糖尿病的安全性和有效性[J].山东医药, 2016,56(29):44-46.[28] 丛姗,王秀梅,李岩,等.人羊膜间充质干细胞对四氯化碳诱导小鼠肝损伤定位修复的研究[J].中国生物工程杂志,2014,34(8): 14-23.[29] 强勇,梁贵友.间充质干细胞移植治疗急性肺损伤的研究进展[J].中华细胞与干细胞杂志(电子版),2014,4(3):212-216.[30] Ringe J,Strassburg S,Neumann K,et al.Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2.J Cell Biochem.2007; 101(1):135-146.[31] 张涛,庞希宁,施萍,等.水通道蛋白1促进人羊膜间充质干细胞的迁移[J].基础医学与临床,2013,33(11):1387-1390.[32] 石清红.人羊膜间充质干细胞静脉移植对哮喘小鼠气道炎症及气道重塑的影响[D].遵义医学院, 2016.[33] Matthay MA,Goolaerts A,Howard JP,et al.Mesenchymal stem cells for acute lung injury: preclinical evidence.Crit Care Med. 2010;38(10 Suppl):569-573.[34] Nauta AJ,Fibbe WE.Immunomodulatory properties of mesenchymal stromal cells. Blood.2007;110(10):3499-3506.[35] Krasnodembskaya A,Song Y,Fang X,et al.Antibacterial Effect of Human Mesenchymal Stem Cells Is Mediated in Part from Secretion of the Antimicrobial Peptide LL-37.Stem Cells.2010; 28(12):2229-2238.[36] 肖瑶,方宁,陈代雄,等.人羊膜间充质干细胞对大鼠胶原性关节炎的疗效及免疫调节作用[J].免疫学杂志,2013,29(6):461-466.[37] Donders R,Vanheusden M,Bogie JF,et al.Human Wharton’s jelly-derived stem cells display immunomodulatory properties and transiently improve rat experimental autoimmune encephalomyelitis.Cell Transplantat.2014;24(10):2077-2098.[38] Gu C,Huang S,Gao D.Angiogenic Effect of Mesenchymal Stem Cells as a Therapeutic Target for Enhancing Diabetic Wound Healing.Int J Low Extrem Wounds.2014;13(2):88-93.[39] TTaki T,Masumoto H,Funamoto M,et al.Fetal mesenchymal stem cells ameliorate acute lung injury in a rat cardiopulmonary bypass model.J Thorac Cardiovasc Surg. 2016;24:1-10. [40] Li C,Zhang W,Jiang X,et al.Human-placenta-derived mesenchymal stem cells inhibit proliferation and function of allogeneic immune cells.Cell Tissue Res.2007; 330(3): 437-446.[41] Hao Y,Ma DH,Hwang DG,et al.Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea.2000;19(3):348-352.[42] Marcus AJ,Coyne TM,Black IB,et al. Fate of amnion-derived stem cells transplanted to the fetal rat brain: migration, survival and differentiation.J Cell Mol Med. 2008;12(4): 1256-1264.[43] Cargnoni A,Ressel L,Rossi D,et al.Conditioned medium from amniotic mesenchymal tissue cells reduces progression of bleomycin-induced lung fibrosis. Cytotherapy. 2012;14(2): 153-161.[44] 李豫皖,朱喜忠,金瑛,等.体外定向诱导人羊膜间充质干细胞向骨、软骨及脂肪细胞的分化[J].中国组织工程究,2017,21(1): 122-127. [45] 金瑛,李豫皖,张承昊,等.体外诱导人羊膜间充质干细胞向韧带细胞分化的实验研究[J].中国修复重建外科杂志,2016,30(2):237- 244.[46] 田洪榛,柏翠芳,陈光辉.人脐带间充质干细胞的研究进展及在心脏疾病中的应用[J].中国循证心血管医学杂志,2016,8(9): 1144-1146.[47] 丛姗,白立恒,李岩,等.人羊膜间充质干细胞移植对CCl4诱导的小鼠损伤肝HGF、SIRT-1、α-SMA及P~(27kip1)表达的影响[J].中国生物化学与分子生物学报,2015,31(3):292-300.[48] Zhao P,Ise H,Hongo M,et al.Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation.2005;79(5):528-535.[49] Lam CF,Liu YC,Hsu J K,et al. Autologous transplantation of endothelial progenitor cells attenuates acute lung injury in rabbits.Anesthesiology.2008;108(3):392-401.[50] Rojas M,Xu J,Woods CR,et al.Bone marrow-derived mesenchymal stem cells in repair of the injured lung.Am J Respir Cell Mol Biol.2005;33(2):145-152.[51] Gupta N,Su X,Popov B,et al.Intrapulmonary Delivery of Bone Marrow-Derived Mesenchymal Stem Cells Improves Survival and Attenuates Endotoxin-Induced Acute Lung Injury in Mice. J Immunol.2007;179(3):1855-1863.[52] 吴中桓,孙广峰,金文虎.人羊膜间充质干细胞促进创面修复及其作用机制[J].中国美容医学,2014,23(20):1753-1757.[53] Lee JW,Fang X,Gupta N,et al. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin- induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci USA.2009;106(38): 16357-16362.[54] Steed DL,Trumpower C,Duffy D,et al.Amnion-derived Cellular Cytokine Solution: A Physiological Combination of Cytokines for Wound Healing.Eplasty.2008;8(5):575-580.[55] Kim SW,Zhang HZ,Kim CE,et al.Amniotic mesenchymal stem cells with robust chemotactic properties are effective in the treatment of a myocardial infarction model.Int J Cardiol. 2013; 168(2):1062-1069.[56] 张继峰,张紫琦,雒晓甜,等.骨髓间充质干细胞对脓毒症急性肺损伤大鼠肺泡巨噬细胞NF-κB的调控[J].中国组织工程研究,2015, 19(10):1556-1561.[57] Zheng Y,Cai W,Zhou S,et al.Protective effect of bone marrow derived mesenchymal stem cells in lipopolysaccharide- induced acute lung injury mediated by claudin-4 in a rat model. Am J Transl Res.2016;8(9):3769-3779.[58] Zhang X, Gao F, Li Q, et al.MSCs with ACE II gene affect apoptosis pathway of acute lung injury induced by bleomycin. Exp Lung Res.2015;41(1):32-43. [59] 邰文琳,董昭兴,徐益恒,等.骨髓间充质干细胞抗肺泡上皮细胞凋亡作用研究[J].昆明医科大学学报,2014,35(12):29-33.[60] Mei SH.Minjury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med.2007;4(9):1525- 1537.[61] Sun L,Xu R,Sun X,et al. Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell.Cytotherapy.2016;18(3):413-422. |
[1] | Yao Xiaoling, Peng Jiancheng, Xu Yuerong, Yang Zhidong, Zhang Shuncong. Variable-angle zero-notch anterior interbody fusion system in the treatment of cervical spondylotic myelopathy: 30-month follow-up [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1377-1382. |
[2] | Wang Jing, Xiong Shan, Cao Jin, Feng Linwei, Wang Xin. Role and mechanism of interleukin-3 in bone metabolism [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(8): 1260-1265. |
[3] | Xiao Hao, Liu Jing, Zhou Jun. Research progress of pulsed electromagnetic field in the treatment of postmenopausal osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(8): 1266-1271. |
[4] | Hui Xiaoshan, Bai Jing, Zhou Siyuan, Wang Jie, Zhang Jinsheng, He Qingyong, Meng Peipei. Theoretical mechanism of traditional Chinese medicine theory on stem cell induced differentiation [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1125-1129. |
[5] | An Weizheng, He Xiao, Ren Shuai, Liu Jianyu. Potential of muscle-derived stem cells in peripheral nerve regeneration [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1130-1136. |
[6] | Fan Yiming, Liu Fangyu, Zhang Hongyu, Li Shuai, Wang Yansong. Serial questions about endogenous neural stem cell response in the ependymal zone after spinal cord injury [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1137-1142. |
[7] | Tian Chuan, Zhu Xiangqing, Yang Zailing, Yan Donghai, Li Ye, Wang Yanying, Yang Yukun, He Jie, Lü Guanke, Cai Xuemin, Shu Liping, He Zhixu, Pan Xinghua. Bone marrow mesenchymal stem cells regulate ovarian aging in macaques [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 985-991. |
[8] | Hou Jingying, Guo Tianzhu, Yu Menglei, Long Huibao, Wu Hao. Hypoxia preconditioning targets and downregulates miR-195 and promotes bone marrow mesenchymal stem cell survival and pro-angiogenic potential by activating MALAT1 [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1005-1011. |
[9] | Zhou Ying, Zhang Huan, Liao Song, Hu Fanqi, Yi Jing, Liu Yubin, Jin Jide. Immunomodulatory effects of deferoxamine and interferon gamma on human dental pulp stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1012-1019. |
[10] | Liang Xuezhen, Yang Xi, Li Jiacheng, Luo Di, Xu Bo, Li Gang. Bushen Huoxue capsule regulates osteogenic and adipogenic differentiation of rat bone marrow mesenchymal stem cells via Hedgehog signaling pathway [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1020-1026. |
[11] | Wang Jifang, Bao Zhen, Qiao Yahong. miR-206 regulates EVI1 gene expression and cell biological behavior in stem cells of small cell lung cancer [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1027-1031. |
[12] | Liu Feng, Peng Yuhuan, Luo Liangping, Wu Benqing. Plant-derived basic fibroblast growth factor maintains the growth and differentiation of human embryonic stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1032-1037. |
[13] | Wen Dandan, Li Qiang, Shen Caiqi, Ji Zhe, Jin Peisheng. Nocardia rubra cell wall skeleton for extemal use improves the viability of adipogenic mesenchymal stem cells and promotes diabetes wound repair [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1038-1044. |
[14] | Zhu Bingbing, Deng Jianghua, Chen Jingjing, Mu Xiaoling. Interleukin-8 receptor enhances the migration and adhesion of umbilical cord mesenchymal stem cells to injured endothelium [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1045-1050. |
[15] | Luo Xiaoling, Zhang Li, Yang Maohua, Xu Jie, Xu Xiaomei. Effect of naringenin on osteogenic differentiation of human periodontal ligament stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1051-1056. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||