Chinese Journal of Tissue Engineering Research ›› 2016, Vol. 20 ›› Issue (51): 7738-7745.doi: 10.3969/j.issn.2095-4344.2016.51.021
Previous Articles Next Articles
Li Yi, Tang Pei-fu
Received:
2016-09-15
Online:
2016-12-09
Published:
2016-12-09
Contact:
Corresponding author: Tang Pei-fu, M.D., Chief physician, Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100853, China
About author:
Li Yi, Studying for master’s degree, Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100853, China
Supported by:
the National Natural Science Foundation for the Youth of China, No. 81401809
CLC Number:
Li Yi, Tang Pei-fu. Can exosomal micro-RNAs be as biomarkers of diseases?[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(51): 7738-7745.
2.1 外泌体的结构和生物学特性 外泌体的共同特征是具有双层膜结构的囊泡,直径为30-100 nm,密度为1.13-1.21 g/mL,大多呈杯状,其双层膜中富含胆固醇、神经鞘磷脂、神经酰胺等脂类物质,位于细胞间隙、细胞外液,或进入外周血循环中。多种类型细胞已被证明可以产生并分泌外泌体到细胞外环境中,包括:B细胞、T细胞、树突状细胞、神经细胞、内皮细胞、间充质干细胞、成纤维细胞以及心肌细胞等[6]。外泌体作为一种生物运输体,其内容物种类繁多,包括蛋白质、短肽链、DNA片段、RNA、mRNA、磷脂以及miRNA等[7]。其内容物成分的多样性,使得外泌体与各种细胞和疾病的病理生理过程密切相关且。 不同种类的细胞通过旁分泌等方式分泌外泌体到各种体液和微环境中,进而对相邻区域或远处细胞进行作用。外泌体的主要生物功能包括物质运输、信息传递和免疫调节等,其内容物在不同疾病中可介导相关信号通路[8]。外泌体可以提供其内容物到远端或相邻的靶细胞,信号则通过外泌体与细胞膜之间的直接接触或细胞表面特异性受体识别等方式进行传递。 2.2 外泌体源性miRNA具有疾病诊断和预后预测潜能 微小RNA(miRNA)是一类高度保守的锻炼非编码RNA(non-coding RNA),它们的成熟序列一般由18-25个碱基组成[9]。miRNA通过与信使RNA中特异的互补序列相结合诱导信使RNA降解或抑制蛋白质的翻译,从而调节特定靶蛋白在细胞内的表达。目前miRNA的调节作用已被证明广泛存在于各种类型的细胞中。自从1931年研究人员在外周循环中发现核酸后,科学家们开始对循环中的核酸物质进行纯化、分离并探索其机制和应用。目前,研究人员已在各种类型体液(包括血清、血浆、腹水及唾液)中分离纯化出miRNA分子,这些miRNA在不同的病理生理状态下会有不同的变化,因此已有很多研究表明循环miRNA可作为一种生物标志物用于疾病的诊断和预后预测。 外泌体作为一种囊泡体(multivesicularbodies,MVBs),其广泛的参与了各种细胞的病理生理过程,外泌体携带有大量生理病理的生物标志物信息,而当外泌体被释放到各种体液和微环境时,其可以携带各种生物信息进行长距离的细胞间通讯[10],因此外泌体内容物可能在临床诊断和治疗方面有所应用[11]。2007年Valadi等[12]第一次在外泌体中提取到miRNA,他们证实肥大细胞分泌的外泌体可将miRNA、mRNA等物质运输到靶细胞,从此人们对外泌体中miRNA的研究与日俱增。用于诊断和预测预后的生物标志物应满足以下几种条件:获得方法无创或创伤较小,有高度的敏感性和特异性,具有早期诊断的能力,检测方法快速准确。外泌体中的miRNA受到外泌体膜结构的保护,可免于RNA酶的降解,从而能够在体液循环和微环境中检测到。其在各种体液中都被广泛检测[7],更是保证了获得方法的无创或较小创伤,由此可见外泌体源性miRNA作为生物标志物用于诊断和预测预后具有很大的潜能。 2.3 外泌体源性miRNA作为生物标志物与肿瘤疾病 外泌体与肿瘤细胞之间的信号传导和肿瘤细胞微环境的构建有着密切的联系,Balaj等[5]研究发现肿瘤细胞比正常成纤维细胞分泌更多的外泌体,并且肿瘤细胞分泌的外泌体所含有的特定的编码和非编码RNA和DNA如c-Myc、LINE-1等具有更高水平的表达,为外泌体源性miRNA作为肿瘤疾病诊断和预测预后的生物标志物的研究奠定了基础。 在消化系统肿瘤的研究中,Madhavan等[13]通过对血清外泌体中多种miRNA检测,发现胰腺癌患者的miRNA-1246,miR-4644,miR-3976和miR-4306表达显著上升,而对照组正常人群则很少表达。Ogata-Kawata等[14]对88例原发性大肠癌患者和11例健康人群的富含外泌体miRNA的血清样品进行微阵列分析(microarray analyses),实验组和对照组的miRNA表达水平差异同29对肿瘤切除后的患者进行比较。同时被选中的miRNA作为生物标志物的灵敏度与CA-199、CEA等肿瘤标记物进行比较。结果显示7 种miRNAs (let-7a,miR-1229,miR-1246,miR-150,miR-21,miR-223和miR-23a)在原发性大肠癌患者中的表达显著高于健康对照组,而在肿瘤手术切除之后又会明显的下降。在灵敏度的比较中,对于Ⅰ期结肠癌患者,miR-23a和miR-1246的灵敏度很高,分别为95.5%和92%高于CA-199和CEA。Sugimachi等[15]比较了肝细胞癌患者与正常人血清中外泌体源性miRNA的水平并发现miR-718在肝细胞癌患者血清中显著下降。另一项研究对比了20例肝细胞癌患者和乙肝患者的血清外泌体源性miRNA发现miR-18a,miR-221,miR-222,和miR-224都有明显增高,而miR-101,miR-106b,miR-122 和miR-195都有明显的降低[16]。肝细胞癌的早期诊断主要依靠MRI、CT以及甲胎蛋白的测定,这些结果并不能很好的进行早期预测因此若能找到合适的外泌体源性miRNA应用于肝细胞癌早期诊断则具有重要的意义。上述研究可见miRNA作为生物标志物对消化系统肿瘤具有一定的临床意义而且具有很大的潜能用于消化系统肿瘤的早期诊断。 在呼吸系统肿瘤的研究中Cazzoli等[17]从30例患者(包括10例肺腺癌患者,10例肺肉芽肿患者和10例年龄性别相匹配的阴性对照患者)中提取血浆样本,进行了大量的miRNA的筛查分析,从中发现了4 种miRNAs(miR-378a,miR-379,miR-139-5p 和miR-200b-5p)作为肺癌的“筛查试验”,可以有效地将被测试者划分为结节组(肺腺癌和肺肿瘤)和非结节组(健康人群)结果显示敏感度和特异性分别为97.5%和72%,ROC曲线下面积为90.8%;随后将检测血浆EVs 中的6 种miRNAs (miR-151a-5p、miR-30a- 3p、miR-200b-5p、miR-629、miR-100 和miR-154-3p)作为肺癌的“诊断试验”,用于把结节组中患者飞卫肺腺癌和肺肉芽肿,结果显示敏感度和特异性分别为96.0%和60.0%,ROC曲线下面积为76.0%。Munagala等[18]研究了血清外泌体miRNA用于复发性肺癌诊断的研究,他们通过体外细胞培养和动物模型的建立共观察到了77个miRNA的表达改变,其中47个miRNA表达上调,30个miRNA表达下调。其中miRNA-21和miR-155被发现与原发性肿瘤相比在复发肿瘤中显著上调。这些数据表明血清外泌体miRNA可能用于原发性和复发性肺癌的非侵入性诊断。 在对泌尿系统肿瘤的研究中,Bryant等[19]对78例前列腺癌患者和28例正常人群的血浆外泌体中的各种miRNA进行RT-PCR分析,结果发现有11种miRNA在前列腺癌患者中有显著升高。其中MiR-141和miR-375可能作为用于诊断前列腺癌的作为生物标志物。Li等[20]又进一步评估了外泌体源性miRNA用于诊断前列腺癌的可行性。他们分别从前列腺癌患者、良性前列腺增生患者和健康人群血清中分离提取外泌体miRNA并进行miR-141水平分析,结果发现前列腺癌患者外泌体miR-141水平显著升高而且转移性前列腺癌中miR-141水平明显高于非转移性前列腺癌。鉴别两者的AUC曲线下面积达到0.869 4,敏感度为80%,特异度为87.1%。由此可见外泌体miR-141可能作为一个良好的泌尿系统肿瘤诊断鉴别工具。 在妇科肿瘤的研究中Taylor等[21]发现有8种miRNA (miR-21,miR-141,miR-200a,miR-200b,miR-200c,miR-203,miR-205和miR-214)被认为可用于卵巢癌的早期诊断,他们在早期卵巢癌和晚期卵巢癌的血清中差异不很显著,但是在良性肿瘤和恶性肿瘤之间其血清水平有显著性不同,这提示我们外泌体中的miRNA可能作为卵巢癌早期诊断的一个有用的工具。Meng等[22]对上皮性卵巢癌患者血清外泌体中miRNA进行了测定,他们发现与健康妇女相比,肿瘤患者的外泌体总表达水平显著升高,其中 miR-373,miR-200a,miR-200b和miR-200c水平显著升高。miR-200a,miR-200b和miR-200c的表达水平可能用于肿瘤良恶性的区分而miR-200b,miR-200c血清水平的升高与CA125和较短的生存率密切相关。总的来讲外泌体miRNA水平与卵巢癌肿瘤发展密切相关。 外泌体源性miRNA与肿瘤调控密切相关,在肿瘤的增殖、侵袭和转移等生物学行为中扮演了重要角色,虽然其具体作用机制还需要不断深入的探索,但其在各系统肿瘤的早期诊断上已表现出巨大的潜力。与此相关的研究应当不断深入,肿瘤的早期诊断可能由此打开一扇新的大门。 2.4 外泌体源性miRNA作为生物标志物与心血管系统疾病 近年来,随着对外泌体研究的深入,科学家们已经证实外泌体在细胞间信息传递过程中的重要作用。 目前的研究表明外泌体相关的miRNA在心肌细胞中表达丰富例如miR-1和miR-133a[23],并且可能用于诊断心肌梗死。Widera等[24]对444例急性冠脉综合征患者(ACS)进行了miRNA的检测,结果表明miR-1,miR-133a,miR-133b,和miR-208b在心肌梗死患者外周血中表达升高,这些miRNA很可能是由缺血坏死的组织通过外泌体途径释放,说明外泌体相关的miRNA对急性心肌梗死具有诊断价值。Wang等[25]设计了随机对照试验包括了51例急性心肌梗死患者和28例健康对照,利用RT-PCR的方法对两组miR-133和miR-328在外周血的水平进行了分析。结果表明急性心肌梗死患者外周血中miR-133水平比对照组增加了4.4倍,急性心肌梗死患者全血和血浆中miR-328则分别增加了10.9倍和16.1倍,而在心肌梗死后7 d miR-133和miR-328则恢复到了与对照组相同水平。由此可见miR-133和miR-328可能用于急性心肌梗死的早期诊断。另一个重要的动物实验利用大鼠实验来探索急性心肌梗死患者尿液中的理想的生物标志物,他们发现外泌体相关的miR-1在急性心肌梗死患者尿液中含量有明显的上升[26]。对大鼠外周血中注射血清外泌体后,急性心肌梗死实验组尿液中的miR-1明显升高,这进一步说明了升高的miR-1是通过外泌体途径分泌。实验的结果表明尿液中外泌体相关miRNA很可能作为诊断急性心肌梗死的新的标记物,患者的尿液采集方便,因而此项研究说明了外泌体内miRNA用于诊断急性心肌梗死具有广阔的临床应用空间。 为了进一步研究miRNA在心血管系统中的应用,Matsumoto等[27]采集了21例发生心力衰竭的患者血清,这些患者在一年内均有急性心肌梗死病史。通过对患者血清中377种microRNA的检测,他们发现miR-192的水平发生了显著上升,同时与miR-192同属于p53基因相关的miR-194和miR-34a的表达与心肌梗死后心力衰竭状态下左心室舒张功能有明显的相关性。这表明外泌体相关的miRNA可能成为心肌梗死后心衰发生的早期诊断标志物。 2.5 外泌体源性miRNA作为生物标志物与泌尿系统疾病 对泌尿系统的疾病的早期诊断不仅可以检测外周血中的外泌体,还可以利用患者尿液进行检测,由于外泌体源性miRNA能够在尿液中稳定存在而免于降解,因此外泌体源性miRNA得到了研究者的广泛关注。Barutta等[28]对1型糖尿病合并早期糖尿病肾病患者尿外泌体的miRNA 进行表达差异性分析,发现miR-145 较对照组表达升高,并且在随后的糖尿病肾病动物实验中此结论得到了证实。他们还发现高糖刺激肾小球系膜细胞后,细胞和外泌体中的miR-145的含量均有升高,这说明mi-R145的表达与糖尿病肾病的发生潜在机制有关。长期以来微量蛋白尿作为生物标志物被广泛用于诊断糖尿病肾病,但临床研究表明其诊断的准确性遭到了质疑[29-30],因而miR-145有可能作为一种新的生物标志物用于糖尿病肾病患者的早期诊断。Lv等[31]采集了32名慢性肾脏病患者尿液样本并进行了外泌体的分离,他们发现miR-29和miR-200相比于对照组会有明显的改变。进一步的研究发现miR-29c与慢性肾脏病患者肾小球率过滤(r=0.362;P < 0.05)和肾小管间质纤维化(r=-0.359;P < 0.05)密切相关。MiR-29a和miR-29c用于肾小管简直纤维化AUC曲线面积分别为0.883和0.738(P < 0.05),利用miR-29a区分中度和重度肾纤维化敏感度和特异度达到了93.8%和81.3%,而利用miR-29c达到了68.8%和81.3%。随后Sole等[32]又对外泌体miRNA用于狼疮性肾炎的诊断进行了研究,由于目前的诊断金标准仍然是肾脏活检,研究者试图评估miR-29c是否能够用于狼疮性肾炎肾纤维化的非侵入性准断标志物。结果表明miR-29c由于预测狼疮性肾炎程度的AUC曲线面积达到0.946(P < 0.001)并且敏感度和特异度都达到了很高的水平(94%和82%)。由此可见miR-c可以良好的反映狼疮性肾炎的病变程度,提示它可以用于诊断狼疮性肾炎患者的非侵入性诊断标志物。 2.6 外泌体源性miRNA作为生物标志物与神经系统疾病 Faure等[33]通过动物实验,首次发现神经元和胶质细胞可分泌外泌体。多种脑细胞之间可以通过外泌体进行物质转移和信号传导,进而形成神经元-胶质细胞信号网络。此后众多研究证明外泌体是神经-胶质细胞信息传递的重要方式。Manterola等[34]对25例多形性恶性胶质瘤的患者及25例正常人的血清外泌体进行检测,利用基因芯片对381种miRNA进行筛查,最终发现7种miRNA(miR483-5p,miR-574-3p,miR-320,miR-197,miR-484,miR-146a和miR-223)还有一种snctRNA(RNU6-1)的表达具有显着差异性,通过对ROC曲线的分析表明RNU6-1,miR-574-3p,miR-320联合应用,灵敏度达70%,特异度达71%,说明外泌体源性的miRNA有作为多形性恶性胶质瘤早期诊断的生物标志物的潜能。Bellingham等[35]研究朊病毒感染的神经元细胞释放的外泌体miRNA谱发现其包含多种RNA种类如逆转录病毒RNA、mRNA片段、tRNA片段、核小RNA、核仁小分子RNA及miRNA等。进一步的研究发现朊病毒感染的神经元分泌外泌体中let-7b,let-7i,miR-128a,miR-21,miR-222,miR-29b,miR-342-3p and miR-424的表达显著增加同时miR-146的表达降低,这些结果说明朊病毒感染期间释放的循环外泌体RNA有可能由于诊断。Lugli等[36]通过采集35例诊断为阿尔兹海默症患者的血清并利用差速离心法分离提取外泌体miRNA,在初步筛选中20个miRNA表现出显著的差异(miR-23b-3p,miR-24-3p,miR-29b-3p,miR-125b- 5p,miR-138-5p,miR-139-5p,miR-141-3p,miR- 150-5p,miR-152-3p,miR-185-5p,miR-338-3p,miR-342-3p, miR-342-5p,miR-548at-5p,miR-659-5p,miR-3065-5p,miR-3613- 3p,miR-3916,miR-4772-3p,miR-5001-3p),他们发现miR-342-3p的表达下调与其他miRNA表达相互关联,而且也被以往研究报道过表达下调,因此可能作为一个独立的标志物。外泌体源性miRNA在神经系统疾病的研究还处于起始阶段,长期以来影像学检查和病理组织活检是神经系统疾病的主要诊断手段,寻求无创或微创的高效诊断方法一直是临床工作所面临的难题。外泌体能够自由穿过人体血脑屏障进入外周循环[37],并且能够在血清和脑脊液等处检测到,取得容易、微创等优势使其作为神经系统疾病诊断的新方法具有巨大的潜力。 2.7 外泌体源性miRNA在骨骼肌肉系统疾病的研究进展已有研究者开展外泌体作为骨骼肌肉系统疾病诊断和治疗工具的研究。Shimbo等[38]将人工合成的miR-143导入到骨髓间充质干细胞后,以外泌体的形式作用于骨肉瘤细胞可以降低肿瘤细胞的转移能力,说明外泌体包装miRNA用于治疗骨肉瘤等疾病具有显著优势。尤文氏肉瘤(ES)是在儿童和青少年中常见的软组织或骨肿瘤,其特点早期转移率高[39]。Miller等[40]通过基因芯片等技术发现ES分泌的外泌体中含有多种特异性的基因如EWS-FLI1所表达的mRNA和蛋白质,可能在外周血采集并用于尤文氏肉瘤的诊断。肿瘤的骨转移是仅次于肺转移和肝转移的常见转移部位[41],肿瘤骨转移与破骨细胞的分化以及溶骨过程有关。最新的研究发现miRNA与肿瘤细胞介导的破骨细胞分化以及骨转移密切相关,Ell等[42]发现随着破骨细胞分化和形成,miR-16和miR-378的血清水平显著升高。Valencia等[43]报道外泌体源性miR-326可能作为肺癌骨转移的生物标记物,他们发现miR-326的水平可以反映肿瘤的自主释放。Li等[44]发现破骨细胞来源的外泌体内的miR-214-3p能够转移到成骨细胞并抑制成骨细胞骨形成过程,这为探索股形成机制提供了新的思路。由于外泌体不易被降解因此其含有的miR-214-3p可能用于骨代谢疾病如骨质疏松的诊断和治疗。Cui等[45]发现了547种miRNA在矿化成骨前体细胞来源的外泌体中表达,并证实矿化的成骨前体细胞来源的外泌体能够通过其内miRNA的表达调节Wnt信号通路进而调节骨髓间质细胞向成骨细胞的分化;Xu等[46]报道了在骨髓间充质细胞成骨分化过程中外泌体来源的miRNA会有不同程度的表达。其中79种miRNA参与了介导Wnt、mRNA监测通路等信号通路。目前关于外泌体源性miRNA在骨代谢疾病中的研究不多,但已有的研究表明外泌体广泛参与成破骨细胞分化调节,并有着进一步作为诊断、治疗靶点的潜能。近几年研究者已经发现各种不同miRNA对骨代谢性疾病的影响。MiRNA对骨细胞功能有着显著地作用,它在骨疾病中也起了重要的作用。临床试验表明miRNA是骨疾病如骨质疏松、骨关节炎、类风湿性关节炎的病理变化过程中的关键环节。Wang等[47]对20名绝经后妇女进行miRNA的检测,发现循环单核细胞内的(破骨细胞前体细胞)miR-133a在患有骨质疏松症的绝经后妇女体内表达水平升高,进一步的研究发现miR-133a可能通过抑制CXCL11,CXCR3,SLC39A1等抑制因子进而诱发骨损失。Cao等[48]对10名高骨密度和10例低骨密度的绝经后妇女的循环单核细胞内miR-422a进行检测,发现miR-422a在低骨密度组患者中的表达有显著上升。Li等[49]对120名绝经后妇女的3种miRNA (miR-21,miR-133a和miR-146a)在血浆中的表达水平进行研究,进一步证实了miR-133a在绝经后妇女患骨质疏松症患者中表达上调而miR-21的表达水平发生了下降。Seeliger等[50]通过对髋部骨折合并骨质疏松的患者血清和骨组织进行miRNA的筛检,确定了9种miRNA(miR-21,miR-23A,miR-24,miR-93,miR-100,miR-122a,miR-124a,miR-125b,和miR-148A)在骨折疏松患者血清中表达显著上升,5种miRNA (miR-21,miR-23a,miR-24,miR-100 and miR-125b)在骨组织和血清中表达均显著上升。 以上研究表明miRNA在骨代谢、骨形成和分化过程中发挥了重要的作用,若能将外泌体源性miRNA作为关注点,研究其在这些病理生理过程中所参与的信号传导和细胞通讯机制,进而在循环血中的外泌体内探索特异表达的miRNA,可能会有多疾病诊断和发病机制相关的成果出现。"
[1] Pan BT, Teng K, Wu C, et al. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 1985; 101(3):942-948.[2] Simpson RJ, Lim JW, Moritz RL, et al. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009;6(3):267-83.[3] Ludwig AK, Giebel B. Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol. 2012;44(1):11-15.[4] Keerthikumar S, Chisanga D, Ariyaratne D, et al. ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol. 2016;428(4):688-692.[5] Balaj L, Lessard R, Dai L, et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011;2:180.[6] Yang X, Weng Z, Mendrick DL, et al. Circulating extracellular vesicles as a potential source of new biomarkers of drug-induced liver injury. Toxicol Lett. 2014;225(3):401-406.[7] Keller S, Ridinger J, Rupp AK, et al. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med. 2011;9:86.[8] Tetta C, Ghigo E, Silengo L, et al. Extracellular vesicles as an emerging mechanism of cell-to-cell communication. Endocrine. 2013;44(1):11-19.[9] Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136(2):215-233.[10] Colombo M, Raposo G, Thery C, Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014; 30:255-289.[11] Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol. 2015;77:13-27.[12] Valadi H, Ekstrom K, Bossios A, et al. Exosome- mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-659.[13] Madhavan B, Yue S, Galli U, et al. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Int J Cancer. 2015;136(11):2616-2627.[14] Ogata-Kawata H, Izumiya M, Kurioka D, et al. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One. 2014;9(4):e92921.[15] Sugimachi K, Matsumura T, Hirata H, et al. Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation. Br J Cancer. 2015;112(3):532-538.[16] Sohn W, Kim J, Kang SH, et al. Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma. Exp Mol Med. 2015;47(9):e184.[17] Cazzoli R, Buttitta F, Di Nicola M, et al. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J Thorac Oncol. 2013;8(9):1156-1162.[18] Munagala R, Aqil F, Gupta RC, Exosomal miRNAs as biomarkers of recurrent lung cancer. Tumour Bio. 2016.[19] Bryant RJ, Pawlowski T, Catto JW, et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 2012;106(4):768-774.[20] Li Z, Ma YY, Wang J, et al. Exosomal microRNA-141 is upregulated in the serum of prostate cancer patients. Onco Targets Ther. 2016;9:139-148.[21] Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110(1): 13-21.[22] Meng XV, Muller K. Milde-Langosch, et al. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget. 2016.[23] Kuwabara Y, Ono K, Horie T, et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet. 2011;4(4):446-454.[24] Widera C, Gupta SK, Lorenzen JM, et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol. 2011;51(5): 872-875.[25] Wang R, Li N, Zhang Y, et al. Circulating microRNAs are promising novel biomarkers of acute myocardial infarction. Intern Med. 2011;50(17):1789-1795.[26] Cheng Y, Wang X, Yang J, et al. A translational study of urine miRNAs in acute myocardial infarction. J Mol Cell Cardiol. 2012;53(5):668-676.[27] Matsumoto S, Sakata Y, Suna S, et al. Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ Res. 2013;113(3):322-326.[28] Barutta F, Tricarico M, Corbelli A, et al. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS One. 2013;8(11):e73798.[29] Glassock RJ. Debate: CON position. Should microalbuminuria ever be considered as a renal endpoint in any clinical trial? Am J Nephrol. 2010;31(5):462-467.[30] Weir MR, Bakris GL. Editorial perspective. Should microalbuminuria ever be considered as a renal endpoint in any clinical trial? Am J Nephrol. 2010;31(5):469-470.[31] Lv LL, Cao YH, Ni HF, et al. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am J Physiol Renal Physiol. 2013;305(8):F1220-F1227.[32] Sole C, Cortes-Hernandez J, Felip ML, et al. miR-29c in urinary exosomes as predictor of early renal fibrosis in lupus nephritis. Nephrol Dial Transplant. 2015; 30(9): 1488-1496.[33] Faure J, Lachenal G, Court M, et al. Exosomes are released by cultured cortical neurones. Mol Cell Neurosci. 2006;31(4):642-648.[34] Manterola L, Guruceaga E, Gallego Perez-Larraya J, et al. A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neurol Oncol. 2014;16(4):520-527.[35] Bellingham SA, Coleman BM, Hill AF. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res. 2012;40(21):10937-10949.[36] Lugli G, Cohen AM, Bennett DA, et al. Plasma exosomal mirnas in persons with and without alzheimer disease: altered expression and prospects for biomarkers. PLoS One. 2015;10(10):e0139233.[37] El Andaloussi S, Lakhal S, Mager I, et al. Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev. 2013;65(3):391-397.[38] Shimbo K, Miyaki S, Ishitobi H, et al. Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochem Biophys Res Commun. 2014;445(2):381-387.[39] Cotterill SJ, Ahrens S, Paulussen M, et al. Prognostic factors in Ewing's tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing's Sarcoma Study Group. J Clin Oncol. 2000; 18(17):3108-3114.[40] Miller IV, Raposo G, Welsch U, et al. First identification of Ewing's sarcoma-derived extracellular vesicles and exploration of their biological and potential diagnostic implications. Biol Cell. 2013;105(7):289-303.[41] Krzeszinski JY, Wan Y. New therapeutic targets for cancer bone metastasis. Trends Pharmacol Sci. 2015; 36(6):360-373.[42] Ell B, Mercatali L, Ibrahim T, et al. Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell. 2013;24(4): 542-546.[43] Valencia K, Luis-Ravelo D, Bovy N, et al. miRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization. Mol Oncol. 2014;8(3): 689-703.[44] Li D, Liu J, Guo B, et al. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat Commun. 2016;7:10872.[45] Cui Y, Luan J, Li H, et al. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Lett. 2016;590(1):185-192.[46] Xu JF, Yang GH, Pan XH, et al. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. PLoS One. 2014;9(12): e114627.[47] Wang Y, Li L, Moore BT, et al. MiR-133a in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. PLoS One. 2012;7(4):e34641.[48] Cao Z, Moore BT, Wang Y, et al. MiR-422a as a potential cellular microRNA biomarker for postmenopausal osteoporosis. PLoS One. 2014;9(5):e97098.[49] Li H, Wang Z, Fu Q, et al. Plasma miRNA levels correlate with sensitivity to bone mineral density in postmenopausal osteoporosis patients. Biomarkers. 2014;19(7):553-556.[50] Seeliger CK, Karpinski A, Haug T, et al. Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Miner Res. 2014; 29(8):1718-1728. |
[1] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[2] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
[3] | Xu Dongzi, Zhang Ting, Ouyang Zhaolian. The global competitive situation of cardiac tissue engineering based on patent analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 807-812. |
[4] | Wu Zijian, Hu Zhaoduan, Xie Youqiong, Wang Feng, Li Jia, Li Bocun, Cai Guowei, Peng Rui. Three-dimensional printing technology and bone tissue engineering research: literature metrology and visual analysis of research hotspots [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 564-569. |
[5] | Chang Wenliao, Zhao Jie, Sun Xiaoliang, Wang Kun, Wu Guofeng, Zhou Jian, Li Shuxiang, Sun Han. Material selection, theoretical design and biomimetic function of artificial periosteum [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 600-606. |
[6] | Liu Fei, Cui Yutao, Liu He. Advantages and problems of local antibiotic delivery system in the treatment of osteomyelitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 614-620. |
[7] | Li Xiaozhuang, Duan Hao, Wang Weizhou, Tang Zhihong, Wang Yanghao, He Fei. Application of bone tissue engineering materials in the treatment of bone defect diseases in vivo [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 626-631. |
[8] | Zhang Zhenkun, Li Zhe, Li Ya, Wang Yingying, Wang Yaping, Zhou Xinkui, Ma Shanshan, Guan Fangxia. Application of alginate based hydrogels/dressings in wound healing: sustained, dynamic and sequential release [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 638-643. |
[9] | Chen Jiana, Qiu Yanling, Nie Minhai, Liu Xuqian. Tissue engineering scaffolds in repairing oral and maxillofacial soft tissue defects [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 644-650. |
[10] | Xing Hao, Zhang Yonghong, Wang Dong. Advantages and disadvantages of repairing large-segment bone defect [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 426-430. |
[11] | Chen Siqi, Xian Debin, Xu Rongsheng, Qin Zhongjie, Zhang Lei, Xia Delin. Effects of bone marrow mesenchymal stem cells and human umbilical vein endothelial cells combined with hydroxyapatite-tricalcium phosphate scaffolds on early angiogenesis in skull defect repair in rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3458-3465. |
[12] | Wang Hao, Chen Mingxue, Li Junkang, Luo Xujiang, Peng Liqing, Li Huo, Huang Bo, Tian Guangzhao, Liu Shuyun, Sui Xiang, Huang Jingxiang, Guo Quanyi, Lu Xiaobo. Decellularized porcine skin matrix for tissue-engineered meniscus scaffold [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3473-3478. |
[13] | Mo Jianling, He Shaoru, Feng Bowen, Jian Minqiao, Zhang Xiaohui, Liu Caisheng, Liang Yijing, Liu Yumei, Chen Liang, Zhou Haiyu, Liu Yanhui. Forming prevascularized cell sheets and the expression of angiogenesis-related factors [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3479-3486. |
[14] | Liu Chang, Li Datong, Liu Yuan, Kong Lingbo, Guo Rui, Yang Lixue, Hao Dingjun, He Baorong. Poor efficacy after vertebral augmentation surgery of acute symptomatic thoracolumbar osteoporotic compression fracture: relationship with bone cement, bone mineral density, and adjacent fractures [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3510-3516. |
[15] | Liu Liyong, Zhou Lei. Research and development status and development trend of hydrogel in tissue engineering based on patent information [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3527-3533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||