Chinese Journal of Tissue Engineering Research ›› 2016, Vol. 20 ›› Issue (38): 5636-5641.doi: 10.3969/j.issn.2095-4344.2016.38.002
Previous Articles Next Articles
Received:
2016-07-09
Online:
2016-09-16
Published:
2016-09-16
About author:
Xing Li-na, Master, Attending physician, Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
CLC Number:
Xing Li-na, Zhang Xue-jun, Wang Ying, Niu Zhi-yun, Wang Fu-xu, Wen Shu-peng.
2.2 不同对多发性骨髓瘤细胞活性的影响 氧化石墨烯负载多柔比星组、氧化石墨烯组、多柔比星组、对照组的细胞存活率分别为(64.3±6.5)%、(85.3±0.9)%、(74.5±1.3)%、100%。 4组细胞存活率比较差异有显著性意义(F=11.583,P < 0.05),两两之间比较发现:氧化石墨烯负载多柔比星组、多柔比星组、氧化石墨烯组的细胞存活率均低于对照组(P < 0.05),氧化石墨烯负载多柔比星组细胞存活率明显低于氧化石墨烯组(P < 0.05),氧化石墨烯负载多柔比星组的细胞存活率虽低于多肉比星组,但差异无显著性意义(P > 0.05)。结果表明,氧化石墨烯对多发性骨髓瘤细胞具有毒性作用,但细胞存活率在80%以上,其毒性作用较低;多柔比星对多发性骨髓瘤细胞的毒性作用较大,氧化石墨烯对多柔比星的毒性作用没有太大影响。 2.3 不同材料对多发性骨髓瘤细胞周期的影响 氧化石墨烯负载多柔比星组、多柔比星组和氧化石墨烯组细胞周期G0/G1、S和G2/M之间比较差异均无显著性意义(P > 0.05)。两两之间比较:石墨烯负载多柔比星组细胞周期G0/G1、S和G2/M与多柔比星组、氧化石墨烯组、对照组比较差异无显著性意义(P > 0.05),氧化石墨烯组细胞周期G0/G1、S和G2/M和对照组、多柔比星组比较差异无显著性意义(P > 0.05),见表1。表明氧化石墨烯负载多柔比星、多柔比星和氧化石墨烯均不影响多发性骨髓瘤细胞的细胞周期。 2.4 不同材料对多发性骨髓瘤细胞凋亡的影响 氧化石墨烯负载多柔比星组、氧化石墨烯组、多柔比星组、对照组的细胞凋亡率分别为(15.4±0.8)%、(5.4±1.2)%、(14.5±2.1)%、(5.6±0.9)%。 4组细胞凋亡率比较差异有显著性意义(F=9.584, P < 0.05)。两两之间比较发现:氧化石墨烯组与对照组细胞凋亡率比较差异无显著性意义(P > 0.05),氧化石墨烯负载多柔比星组和多柔比星组细胞凋亡率比较差异无显著性意义(P > 0.05),氧化石墨烯负载多柔比星组、多柔比星组细胞凋亡率高于氧化石墨烯组、对照组(P < 0.05)。表明氧化石墨烯不引起多发性骨髓瘤细胞的凋亡,多柔比星可诱导多发性骨髓瘤细胞凋亡,氧化石墨烯不影响多柔比星对多发性骨髓瘤细胞的凋亡作用。"
[1]Takamatsu Y,Sunami K,Muta T,et al.Kyushu Hematology Organization for Treatment Study Group(K-HOT). Bortezomib, doxorubicin and intermediate-dose dexamethasone (iPAD) therapy for relapsed or refractory multiple myeloma: a multicenter phase 2 study.Int J Hematol. 2013;98(2):179-185. [2]Shahil KM,Alexander A.Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials.Solid State Commun. 2012; 152(15): 1331-1340. [3]Lian P,Zhu X,Liang S,et al.High reversible capacity of SnOi/graphene nanocomposite as an anode material for lithium-ion batteries.Electrochim Acta.2011;56: 4532-4539. [4]Gao Y,Li Y,Zhang L,et al.Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide.J Colloid Interface Sci. 2012;368(1):540-546. [5]Kwak YH,Choi DS,Kim YN,et al.Flexible glucose sensor using CVD-grown graphene-based field effect transistor.Biosens Bioelectron.2012;37(1):82-87. [6]Premkumar T,Geckeler KE.Graphene-DNA hybrid materials:Assembly, applications,and prospects. Prog Polym Sci.2012;37(4):515-529. [7]Li Y,Liu Y,Fu Y,et al.The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways.Biomaterials. 2012; 33(2):402-411. [8]Zhou H,Zhao K,Li W,et al.The interactions between pristine graphene and macrophages and the production of cytokines/chemokines via TLR- and NF-KB-related signaling pathways.Biomaterials. 2012; 33(29):6933-6942. [9]Akhavan O,Ghaderi E,Akhavan A.Size-dependent genotoxicity of graphene nanoplatelets in human stem cells.Biomaterials.2012;33(32):8017-8025. [10]Chang Y,Yang ST,Liu JH,et al.In vitro toxicity evaluation of graphene oxide on A549 cells.Toxicol Lett.2011;200(3):201-210. [11]Cavo M,Tacchetti P,Patriarca F,et al.Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamthasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma:a randomised phase 3 study.Lancet.2010;376(9758): 2075-2085. [12]Harousseau JL,Attal M,Avet-Loiseau H,et al. Bortezomib plus dexamethasone is superior to vincristine plus doxorubicin plus dexamethasone as induction treatment prior to autologous stem-cell transplantation in newly diagnosed multiple myeloma: results of the IFM 2005-01 phase III trial.J Clin Oncol. 2010;28(30):4621-9462. [13]Sonneveld P,Schmidt-Wolf IG,van der Holt B,et al. Bortezomib induction and maintenance treatment in patients with newly diagnosed multiple myeloma: results of the randomized phase Ⅲ HOVON-65 / GMMG-HD4 trial.J Clin Oncol. 2012;30(24): 2946-2955. [14]Sellner L,Heiss C,Benner A,et al.Autologous retransplantation for patients with recurrent multiple myeloma: a single-center experience with 200 patients. Cancer.2013;119(13):2438-2446. [15]陈燚,杨泽松,陈建斌.造血干细胞移植治疗难治性多发性骨髓瘤[J].中国组织工程研究,2013,17(1):131-136. [16]李燕郴,耿传营.多发性骨髓瘤治疗中的造血干细胞移植[J].临床药物治疗杂志,2013,14(6):38-42. [17]侯慧明,刘林.自体造血干细胞移植治疗多发性骨髓瘤的疗效分析[J].临床血液学杂志,2014,27(2):230-233. [18]Koehne G,Giralt S.Allogeneic hematopoietic stem cell transplantation for multiple myeloma: curative but not the standard of care.Curr Opin Oncol.2012;24(6): 720-726. [19]杨励,蔡真.多发性骨髓瘤的维持治疗[J].中华血液学杂志, 2013,34(4):295-297. [20]Moreau P,Avet-Loiseau H,Harousseau JL,et al.Current trends in autologous stem-cell transplantation for myeloma in the era of novel therapies. J Clin Oncol. 2011;29(14):1898-1906. [21]冯俊,周道斌.多发性骨髓瘤与第二肿瘤[J].中华血液学杂志,2013,34(4):294-295. [22]Knepper SE,van der Holt B,Kersten MJ,et al. Lenalidomide maintenance following non-myeloablative allogeneic stem cell transplantation in multiple myeloma is not feasible : results of the HOVON 76 trial.Blood.2011;118(9):2413-2419. [23]Richardson PG,Jagannath S,Jakubowiak AJ,et al. Phase II Trial of lenalidomide, bortezomib, and dexamethasone in patients (pts) with relapsed and relapsed /refractory multiple myeloma(MM) : updated efficacy and safety data after > 2 years of follow-up. Blood.2010;116(5):3049. [24]Hjorth M,Hjertner Ø,Knudsen LM,et al.Thalidomide and dexamethasone vs. bortezomib and dexamethasone for melphalan refractory myeloma: a randomized study.Eur J Haematol. 2012;88(6): 485-496. [25]Mosieniak G,Sliwinska MA,Alster O,et al.Polyploidy Formation in Doxorubicin-Treated Cancer Cells Can Favor Escape from Senescence.Neoplasia. 2015; 17(12):882-893. [26]Wang LF,Su SW,Wang L.Tert-butylhydroquinone ameliorates doxorubicin-induced cardiotoxicity by activating Nrf2 and inducing the expression of its target genes.Am J Transl Res.2015;7(10):1724-1735. [27]Ge W,Yuan M,Ceylan AF,et al.Mitochondrial aldehyde dehydrogenase protects against doxorubicin cardiotoxicity through a transient receptor potential channel vanilloid 1-mediated mechanism.Biochim Biophys Acta.2015.pii:S0925-4439(15)00368-3. [28]Vyas D,Lopez-Hisijos N,Gandhi S,et al. Doxorubicin-Hyaluronan Conjugated Super-Paramagnetic Iron Oxide Nanoparticles (DOX-HA-SPION) Enhanced Cytoplasmic Uptake of Doxorubicin and Modulated Apoptosis, IL-6 Release and NF-kappaB Activity in Human MDA-MB-231 Breast Cancer Cells.J Nanosci Nanotechnol. 2015; 15(9): 6413-6422. [29]朱晓峰,汪安友,蔡晓燕.脂质体多柔比星对初治多发性骨髓瘤疗效及安全性评估[J].安徽医药, 2015,19(2): 371-373. [30]高慧萍.多柔比星脂质体联合低剂量沙利度胺治疗多发性骨髓瘤的临床分析[J].临床药物治疗杂志, 2015,13(5): 41-43. [31]梁锦湄,朱旻,任浩洋.多柔比星脂质体制剂与非脂质体制剂的不良反应/事件评价[J].中国新药杂志, 2013,22(9): 1100-1104. [32]Biju V,Itoh T,Ishikawa M,et al.Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chem Soc Rev.2010;39(8):3031-3056. [33]Park S,Mohanty N,Suk JW,et al. Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite.Adv Mater.2010;22(15):1736-1740. [34]Zhang L,Xia J,Zhao Q,et al.Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs.Small.2010;6(4): 537-544. [35]Zhang L,Lu Z,Zhao Q,et al.Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small. 2011; 7(4): 460-464. [36]Yang K,Zhang S,Zhang G,et al.Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy.Nano Lett. 2010;10(9): 3318-3323. [37]Bao H,Pan Y,Ping Y,et al.Chitosan-functionalized grapheme oxide as a nanocarrier for drug and gene delivery.Small.2011;7(11):1569-1578. [38]Wang K,Ruan J,Song H,et al.Biocompatibility of graphene oxide.Nanoscale Res Lett.2011;6(1): 8. [39]Liao KH,Lin YS,Macosko CW,et al.Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts.ACS Appl Mater Interfaces. 2011; 3(7): 2607-2615. |
[1] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[2] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
[3] | Xu Dongzi, Zhang Ting, Ouyang Zhaolian. The global competitive situation of cardiac tissue engineering based on patent analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 807-812. |
[4] | Wu Zijian, Hu Zhaoduan, Xie Youqiong, Wang Feng, Li Jia, Li Bocun, Cai Guowei, Peng Rui. Three-dimensional printing technology and bone tissue engineering research: literature metrology and visual analysis of research hotspots [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 564-569. |
[5] | Chang Wenliao, Zhao Jie, Sun Xiaoliang, Wang Kun, Wu Guofeng, Zhou Jian, Li Shuxiang, Sun Han. Material selection, theoretical design and biomimetic function of artificial periosteum [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 600-606. |
[6] | Liu Fei, Cui Yutao, Liu He. Advantages and problems of local antibiotic delivery system in the treatment of osteomyelitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 614-620. |
[7] | Li Xiaozhuang, Duan Hao, Wang Weizhou, Tang Zhihong, Wang Yanghao, He Fei. Application of bone tissue engineering materials in the treatment of bone defect diseases in vivo [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 626-631. |
[8] | Zhang Zhenkun, Li Zhe, Li Ya, Wang Yingying, Wang Yaping, Zhou Xinkui, Ma Shanshan, Guan Fangxia. Application of alginate based hydrogels/dressings in wound healing: sustained, dynamic and sequential release [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 638-643. |
[9] | Chen Jiana, Qiu Yanling, Nie Minhai, Liu Xuqian. Tissue engineering scaffolds in repairing oral and maxillofacial soft tissue defects [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 644-650. |
[10] | Xing Hao, Zhang Yonghong, Wang Dong. Advantages and disadvantages of repairing large-segment bone defect [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 426-430. |
[11] | Chen Siqi, Xian Debin, Xu Rongsheng, Qin Zhongjie, Zhang Lei, Xia Delin. Effects of bone marrow mesenchymal stem cells and human umbilical vein endothelial cells combined with hydroxyapatite-tricalcium phosphate scaffolds on early angiogenesis in skull defect repair in rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3458-3465. |
[12] | Wang Hao, Chen Mingxue, Li Junkang, Luo Xujiang, Peng Liqing, Li Huo, Huang Bo, Tian Guangzhao, Liu Shuyun, Sui Xiang, Huang Jingxiang, Guo Quanyi, Lu Xiaobo. Decellularized porcine skin matrix for tissue-engineered meniscus scaffold [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3473-3478. |
[13] | Mo Jianling, He Shaoru, Feng Bowen, Jian Minqiao, Zhang Xiaohui, Liu Caisheng, Liang Yijing, Liu Yumei, Chen Liang, Zhou Haiyu, Liu Yanhui. Forming prevascularized cell sheets and the expression of angiogenesis-related factors [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3479-3486. |
[14] | Liu Chang, Li Datong, Liu Yuan, Kong Lingbo, Guo Rui, Yang Lixue, Hao Dingjun, He Baorong. Poor efficacy after vertebral augmentation surgery of acute symptomatic thoracolumbar osteoporotic compression fracture: relationship with bone cement, bone mineral density, and adjacent fractures [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3510-3516. |
[15] | Liu Liyong, Zhou Lei. Research and development status and development trend of hydrogel in tissue engineering based on patent information [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3527-3533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||