Chinese Journal of Tissue Engineering Research ›› 2016, Vol. 20 ›› Issue (29): 4368-4375.doi: 10.3969/j.issn.2095-4344.2016.29.016
Previous Articles Next Articles
Di Ya-long1, Han Chang-xu2, Zhao Liang1, Ren Yi-zhong2
Received:
2016-04-16
Online:
2016-07-08
Published:
2016-07-08
Contact:
Ren Yi-zhong, Master, Chief physician, the Second Affiliated Hospital of Inner Mongolia Medical University Hohhot 010030, Inner Mongolia Autonomous Region, China
About author:
Di Ya-long, Studying for master’s degree, Physician, Graduate School, Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia Autonomous Region, China
CLC Number:
Di Ya-long, Han Chang-xu, Zhao Liang, Ren Yi-zhong. Construction strategies for tissue-engineered ligaments[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(29): 4368-4375.
2.1 细胞治疗 最近,应用干细胞性组织工程方法已经证实,可以加速肌腱移植物的愈合和融入骨道[18]。间充质干细胞,由于他们的高增殖率,多能,和从各种组织中相对简单的分离对促进肌腱及腱骨交界处愈合有很大的吸引力[22]。 研究表明,血管丰富的干细胞/祖细胞表面特征性的表达CD34[23-24]。Matsumoto等[20]最近报道,人类前交叉韧带的破裂和隔膜区域包含表达CD34的血管来源的干细胞被赋予了高增殖和多向分化潜能并定向迁移到前交叉韧带破裂的部位促进韧带愈合。此外,他们发现在前交叉韧带重建的大鼠模型中通过血管生成和骨生成促进作用,这些干细胞可以促进腱骨愈合[25]。Mifune等[26]用细胞片包裹肌腱实现干细胞直接传递到肌腱和骨道,并表明CD34细胞片包裹的移植物比其他技术对于前交叉韧带重建后的恢复更迅速。 已经探索了其他细胞来源用于前交叉韧带修复。Lui等[27]报道,从髌腱中分离来的肌腱来源的干细胞表现出了干细胞特性和更高的成骨细胞分化。此外,Chang等[28]研究表明,骨膜祖细胞片可以提供一个可行的治疗策略,以提高腱骨交界处的愈合。脂肪来源的干细胞也被提出作为细胞治疗韧带重建一个替代选择[29]。 2.2 人工韧带系统 使用非降解人工韧带尚未流行,因为30年前引进的设备导致不可接受的高失败率[30-31]。韧带先进强化系统(LARS)用于前交叉韧带和后交叉韧带重建得到了安全、满意的结果[32-36]。韧带先进强化系统是一个聚对苯二甲酸乙二醇酯制成的非可降解人工移植和植入后可保持良好持久的力学性。然而,已经注意到术后并发症的发生率[37-39]。Guidoin等[37]对117例前交叉韧带损伤后离断假体植入移植物后发展为滑膜炎的病例进行了分析。在聚酯为基础的韧带上观察巨噬细胞和巨细胞的慢性炎症反应。其缺乏有序结构和杂乱无序的胶原组织就像瘢痕组织一样,愈合过程中浸润的纤维组织引起韧带网状结构完整性的破坏最终导致失败。这些失败表明,聚对苯二甲酸乙酯人工韧带移植物在移植膝关节后几乎没有韧带化[39]。组织工程的新兴领域认为人工韧带作为一种可行的结构去替代自体移植物和同种异体移植物是有希望的,但还需要在这个舞台上更多的进步。 2.3 富血小板血浆 富血小板血浆是通过离心的方法从自体血中提取出来的血小板浓缩物,具有用自体生物活性物质加强自身修复和再生能力,近来得到越来越多的科学关注,用于肌肉骨骼损伤(包括前交叉韧带和其他韧带损伤)的治疗[40-42]。富血小板血浆中的血小板可以分泌具有多种功能的蛋白质,包括转化生长因子、血小板源生长因子、肝细胞生长因子、血管内皮生长因子等促进组织的再生[43]。损伤引起出血之后,血小板活化并且聚集,释放包括生长因子在内的颗粒,激活治愈过程。富血小板血浆可以影响血管形成,而早期的血管形成对肌腱的修复非常重要。富血小板血浆的应用将激增的化学递质传递到损伤部位的微环境中,包括血小板A-颗粒源性因子等[44]。研究者通过体外研究和动物实验证实了富血小板血浆在腱骨愈合界面对成骨细胞和肌腱细胞增殖有积极影响[45-46]。富血小板血浆除了对细胞修复有刺激作用外,对某些促炎细胞因子也有抑制作用,这可能不利于早期阶段的愈合,尤其是通过抑制活化的巨噬细胞释放白介素1[47]。Xie等[48]在一个犬的模型中证实富血小板血浆可促进血管重建和神经恢复,这或许可以解释富血小板血浆对前交叉韧带移植成熟的促进作用。 在前交叉韧带重建中应用富血小板血浆治疗应当考虑到生理情况下细胞因子和生长因子的局部传递。这或许可以解决单一疗法的局限性,如仅诱导界面愈合的某一方面。虽然基础科学研究表明富血小板血浆治疗对腱骨愈合有积极影响,但到目前为止,在前交叉韧带重建时显示富血小板血浆增加对于临床结果,隧道扩大和移植物融合无统计学显著差异[49]。在另一方面,一些研究人员报道在骨髌腱骨韧带重建后的供区富血小板血浆可有效降低主观疼痛[50-51]。 2.4 生长因子和细胞因子 使用骨诱导性生长因子增强腱骨愈合是当前最集中的研究策略之一。这些生长因子包括转化生长因子、骨形成蛋白、成纤维细胞生长因子、粒细胞集落刺激因子,已显示出在重建前交叉韧带的动物模型的修复和愈合有积极效果[52-57]。从这些研究结果的基础上可以得出,骨诱导生长因子在前交叉韧带重建中具有治疗潜力。 2.5 磷酸钙杂交肌腱 磷酸钙生物水泥或黏合剂可以作为替代的治疗策略,以提高前交叉韧带重建后腱骨愈合,因为他们提供了一个骨传导性和生物相容的环境,促进界面的细胞增殖和生长因子聚集。Matsuzaki等[58]在兔模型中使用磷酸钙杂交肌腱,以提高前交叉韧带移植物在腱骨界面的愈合过程,重新生成一个与正常健康的前交叉韧带止点类似的结构。 2.6 可降解生物材料 生物可降解植入物应该在对移植物最小损伤基础上提供强有力的初始固定。最近Emond等[59]Meta分析结果显示,在前交叉韧带重建中使用生物可吸收螺钉与金属螺钉相比其临床结果没有显著差异。然而,使用生物吸收挤压螺钉引起的一些相关问题包括术中螺钉断裂,炎症反应导致螺钉加速的或不完整的吸收,关节积液,螺钉移位,以及骨道增宽的可能性。Pereira等[60]在他们的回顾性文章提到,迁移是生物可吸收挤压螺丝潜在的并发症。生物可吸收螺钉对临床相关影响的信息是罕见的,这可能存在发表偏倚。此外,人体对螺钉可能存在的复杂反应与在实验室条件下反应是不同的。可以明确的是,材料科学的发展将继续在生物相容性固定系统中发挥重要作用。 Farraro等[61]表明,在前交叉韧带重建时使用镁挤压螺钉固定移植物,关节稳定性和移植物功能的恢复与钛螺钉基本相似。此外,镁环修复的前交叉韧带可以消除损伤前交叉韧带的两端部之间的间隙,以恢复关节的稳定性和正常功能。尽管如此,广泛的临床使用前仍然存在一些挑战,最显著的是如何控制腐蚀速率,这高度依赖于其几何形状,组成成分和植入物的位置。 Murray等[62]提出了一个治疗前交叉韧带损伤的可能性,即强化生物修复前交叉韧带。他们在猪身上证明,使用生物活性支架(胶原血小板复合体)可显著改善传统前交叉韧带修复的结果,结构性质与传统修复相当。除此之外,在临床前期的模型中生物强化的前交叉韧带修复可以减少创伤后骨关节炎的发生。然而,临床前模型不同与人体的情况,该方法的临床安全性和有效性需要在此技术上进一步研究[63]。 2.7 力学刺激 食品和药物管理局批准应用能量为30 mW/cm2的低强度脉冲超声波(LIPUS)刺激干预用于增强骨折愈合和慢性骨不连,以及用于软骨缺损和韧带损伤的治疗得到了广泛的应用[64-68]。最近的动物研究表明,超声不仅加速腱骨愈合而且还创建了一个类似于天然附着点的连接点[64,69-70]。用低强度脉冲超声波治疗改善预后的可能性解释是促进附着点的愈合。低强度脉冲超声波治疗促进成骨细胞和成纤维细胞增殖,这有助于改善胶原形成和骨重建[71]。血管内皮生长因子和白细胞介素1的水平增加,从而提高了先前缺血性环境中的血管生成和蛋白合成[72-73]。此外,低强度脉冲超声波治疗增加骨形成蛋白的表达可能增加腱骨愈合[74]。低强度脉冲超声波改善局部血液灌注和血管生成,刺激软骨成熟,提高成骨细胞的分化和增殖,并刺激间充质干细胞的成骨分化;因此它似乎是韧带重建后的早期康复阶段的促使腱骨愈合的无创工具。可以想象,在家中使用低强度脉冲超声波来刺激腱骨愈合,目的是加速康复,使患者在不久的将来早期恢复正常活动。在腱骨延迟愈合的模型中证明体外冲击波疗法可以增强纤维软骨再生[75]。体外冲击波疗法不仅为纤维软骨和细胞因子生成提供了力学环境,还正向调节了其表达。 2.8 内侧副韧带 内侧副韧带损伤,特别是股骨内侧髁近端损伤模式没有手术干预很可能自愈,因此优先选择保守治疗。典型的关节外韧带自然愈合可分为4个阶段,其包括血肿形成,细胞增殖,基质沉积和组织结构形成。尽管内侧副韧带损伤后功能恢复相对较快,但生物力学调查显示愈合后的组织不如正常的内侧副韧带,甚至是在受伤多年后。在这方面,组织工程方法修复或重建被视为一种恢复内侧副韧带组织类型接近正常的手段,因此该方面研究或许可以成为一个新的主题。Aragona等[76]在一篇经典的文章中提到在犬体内使用碳纤维增强聚乳酸复合材料组成的部分可吸收组织支架重建内侧副韧带,在植入26周后该材料比形成的瘢痕组织更稳定。Musahl等[77]报道了在兔体内利用猪小肠黏膜下层作为支架来评估是否小肠黏膜下层提高了内侧副韧带损伤处的愈合。小肠黏膜下层的使用改善了手术12周后内侧副韧带的力学性能和组织学表观。Liang等[78-79]进行了一项长达26周的术后跟踪调查证实了上述结论,并在进一步的研究中发现在小肠黏膜下层增强损伤模型中V型胶原蛋白,核心蛋白多糖的基因表达显著降低,从而增强了其力学性能。 人们对注射生长因子的生物方法也进行了研究。Hildebrand等[80]在兔模型中发现使用血小板源性生长因子BB 6周后可以改善愈合后内侧副韧带的生物力学。力学方面,血小板源性生长因子BB组显示出更大的极限载荷,吸收更多的能量和更大的极限延伸值。最近,Yoshioka等[81]研究在兔模型中注射富生长因子血浆对内侧副韧带愈合的影响,认为可以刺激成纤维细胞增殖以及新生血管形成,且愈合后内侧副韧带结构在统计学上与未经处理的对照组相比更好。 2.9 局限性 随着研究的继续,期待合适的组织工程策略用于膝关节韧带重建,尽可能避免当前自体肌腱移植和异体肌腱移植技术的缺点,同时允许术后患者立即进行功能锻炼尽快参与体育活动。然而,尽管目前显示有一些好处,但必须承认许多组织工程为基础的治疗仍然缺乏强大的临床支持。关于这些新疗法潜在的好处和安全性的推论必须考虑少数的研究,少样本量和证据水平。此外,严格的局部条件和机制成功促进韧带生长和修复的说法还有待澄清。需要通过更多高质量长期随访的随机临床试验,建立治疗韧带伤的可靠、有效和安全的组织工程策略。"
[1] Spindler KP, Wright RW. Clinical practice. Anterior cruciate ligament tear. N Engl J Med. 2008;359: 2135-2142. [2] Järvelä T.Double-bundle versus single-bundle anterior cruciate ligament reconstruction: A prospective, randomize clinical study. Knee Surg Sports Traumatol Arthrosc.2007;15:500-507. [3] Salmon L, Russell V, Musgrove T,et al. Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy. 2005;21:948-957. [4] Shah AA, McCulloch PC, Lowe WR. Failure rate of Achilles tendon allograft in primary anterior cruciate ligament reconstruction. Arthroscopy.2010;26:667-674. [5] Snow M, Campbell G, Adlington J, et al. Two to five year results of primary ACL reconstruction using doubled tibialis anterior allograft.Knee Surg Sports Traumatol Arthrosc.2010;18:1374-1378. [6] van Eck CF, Schkrohowsky JG, Working ZM, et al. Prospective analysis of failure rate and predictors of failure after anatomic anterior cruciate ligament reconstruction with allograft. Am J Sports Med.2012;40: 800-807. [7] Bach BR Jr, Levy ME, Bojchuk J, et al. Single- incision endoscopic anterior cruciate ligament reconstruction using patellar tendon autograft. Minimum two-year follow-up evaluation. Am J Sports Med.1998;26:30-40. [8] Bach BR Jr, Tradonsky S, Bojchuk J, et al. Arthroscopically assisted anterior cruciate ligament reconstruction using patellar tendon autograft. Five- to nine-year follow-up evaluation. Am J Sports Med. 1998; 26:20-29. [9] Crawford C, Kainer M, Jernigan D, et al.Investigation of postoperative allograft-associated infections in patients who underwent musculoskeletal allograft implantation.Clin Infect Dis.2005;41:195-200. [10] Grana WA, Egle DM, Mahnken R, et al. An analysis of autograft fixation after anterior cruciate ligament reconstruction in a rabbit model.Am J Sports Med. 1994;22:344-351. [11] Ballock RT, Woo SL, Lyon RM, et al. Use of patellar tendon autograft for anterior cruciate ligament reconstruction in the rabbit: A long-term histologic and biomechanical study. J Orthop Res.1989;7: 474-485. [12] Cooper RR, Misol S.Tendon and ligament insertion. A light and electron microscopic study. J Bone Joint Surg Am.1970;52:1-20. [13] Brophy RH, Kovacevic D,Imhauser CW,et al.Effect of short-duration low-magnitude cyclic loading versus immobilization on tendon-bone healing after ACL reconstruction in a rat model. J Bone Joint Surg Am. 2011;93:381-393. [14] Gulotta LV,Kovacevic D,Ying L, et al. Augmentation of tendon-tobone healing with a magnesium-based bone adhesive. Am J Sports Med.2008;36:1290-1297. [15] Wong MW,Qin L,Tai JK,et al.Engineered allogeneic chondrocyte pellet for reconstruction of fibrocartilage zone at bone-tendon junctiondA preliminary histological observation. J Biomed Mater Res B Appl Biomater.2004;70:362-367. [16] Rodeo SA, Arnoczky SP, Torzilli PA, et al. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog.J Bone Joint Surg Am. 1993;75:1795-1803. [17] Tomita F, Yasuda K, Mikami S, et al.Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bonepatellar tendon-bone graft in anterior cruciate ligament reconstruction. Arthroscopy. 2001;17:461-476. [18] Petrigliano FA, McAllister DR, Wu BM. Tissue engineering for anterior cruciate ligament reconstruction: A review of current strategies. Arthroscopy. 2006;22:441-451. [19] Matsumoto T, Kubo S, Sasaki K, et al. Acceleration of tendon-bone healing of anterior cruciate ligament graft using autologous ruptured tissue. Am J Sports Med. 2012;40:1296-1302. [20] Matsumoto T, Ingham SM, Mifune Y, et al. Isolation and characterization of human anterior cruciate ligamentderived vascular stem cells. Stem Cells Dev 2012;21: 859-872. [21] Yoshikawa T, Tohyama H, Katsura T, et al. Effects of local administration of vascular endothelial growth factor on mechanical characteristics of the semitendinosus tendon graft after anterior cruciate ligament reconstruction in sheep. Am J Sports Med. 2006;34:1918-1925. [22] Tucker BA, Karamsadkar SS, Khan WS, et al. The role of bone marrow derived mesenchymal stem cells in sports injuries. J Stem Cells.2010;5:155-166. [23] Howson KM, Aplin AC, Gelati M, et al. The postnatal rat aorta contains pericyte progenitor cells that form spheroidal colonies in suspension culture. Am J Physiol Cell Physiol.2005;289: C1396-C1407. [24] Zengin E, Chalajour F, Gehling UM, et al.Vascular wall resident progenitor cells: A source for postnatal vasculogenesis. Development.2006;133:1543-1551. [25] Mifune Y, Matsumoto T, Ota S, et al.Therapeutic potential of anterior cruciate ligament-derived stem cells for anterior cruciate ligament reconstruction.Cell Transplant.2012;21:1651-1665. [26] Mifune Y, Matsumoto T, Takayama K, et al.Tendon graft revitalization using adult anterior cruciate ligament (ACL)-derived CD34þ cell sheets for ACL reconstruction. Biomaterials.2013;34:5476-5487. [27] Lui PP, Wong OT. Tendon stem cells: Experimental and clinical perspectives in tendon and tendon-bone junction repair. Muscles Ligaments Tendons J 2012;2: 163-168. [28] Chang CH, Chen CH, Liu HW, et al. Bioengineered periosteal progenitor cell sheets to enhance tendon-bone healing in a bone tunnel. Biomed J.2012;35:473-480. [29] Eagan MJ, Zuk PA, Zhao KW, et al. The suitability of human adipose-derived stem cells for the engineering of ligament tissue. J Tissue Eng Regen Med.2012; 6: 702-709. [30] Murray AW, Macnicol MF.10-16 Year results of LeedsKeio anterior cruciate ligament reconstruction. Knee.2004;11:9-14. [31] Jadeja H, Yeoh D, Lal M, et al.Patterns of failure with time of an artificial scaffold class ligament used for reconstruction of the human anterior cruciate ligament. Knee 2007;14:439-442. [32] Li H, Chen C, Zhang S, et al.The use of layer by layer selfassembled coatings of hyaluronic acid and cationized gelatin to improve the biocompatibility of poly(ethylene terephthalate) artificial ligaments for reconstruction of the anterior cruciate ligament. Acta Biomater.2012;8:4007-4019. [33] Nau T, Lavoie P, Duval N.A new generation of artificial ligaments in reconstruction of the anterior cruciate ligament. Two-year follow-up of a randomised trial.J Bone Joint Surg Br. 2002;84:356-360. [34] Liu ZT, Zhang XL, Jiang Y, et al. Four-strand hamstring tendon autograft versus LARS artificial ligament for anterior cruciate ligament reconstruction. Int Orthop. 2010;34:45-49. [35] Shen G, Xu Y, Dong Q, et al. Arthroscopic posterior cruciate ligament reconstruction using LARS artificial ligament: A retrospective study. J Surg Res. 2012;173: 75-82. [36] Ranger P, Renaud A, Phan P, et al. Evaluation of reconstructive surgery using artificial ligaments in 71 acute knee dislocations. Int Orthop 2011;35: 1477-1482. [37] Guidoin MF, Marois Y, Bejui J, et al. Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials.2000;21:2461-2474. [38] Li H, Yao Z, Jiang J, et al. Biologic failure of a ligament advanced reinforcement system artificial ligament in anterior cruciate ligament reconstruction: A report of serious knee synovitis. Arthroscopy.2012;28:583-586. [39] Marumo K, Saito M, Yamagishi T, et al. The “ligamentization” process in human anterior cruciate ligament reconstruction with autogenous patellar and hamstring tendons: A biochemical study. Am J Sports Med.2005;33: 1166-1173. [40] Moraes VY, Lenza M, Tamaoki MJ, et al. Platelet-rich therapies for musculoskeletal soft tissue injuries. Cochrane Database Syst Rev 2013;12:CD010071. [41] Taylor DW, Petrera M, Hendry M,et al.A systematic review of the use of platelet-rich plasma in sports medicine as a new treatment for tendon and ligament injuries. Clin J Sport Med.2011;21:344-352. [42] Ersen A, Demirhan M, Atalar AC, et al. Platelet-rich plasma for enhancing surgical rotator cuff repair: Evaluation and comparison of two application methods in a rat model. Arch Orthop Trauma Surg.2014;134: 405-411. [43] Wadhwa M, Seghatchian MJ, Lubenko A, et al. Cytokine levels in platelet concentrates: Quantitation by bioassays and immunoassays.Br J Haematol. 1996; 93:225-234. [44] Pietrzak WS, Eppley BL. Platelet rich plasma: Biology and new technology. J Craniofac Surg.2005;16: 1043-1054. [45] Zhai W, Wang N, Qi Z, et al.Platelet-rich plasma reverses the inhibition of tenocytes and osteoblasts in tendon- bone healing. Orthopedics.2012;35:e520- e525. [46] Mazzocca AD, McCarthy MB, Chowaniec DM, et al. The positive effects of different platelet-rich plasma methods on human muscle, bone, and tendon cells. Am J Sports Med.2012;40:1742-1749. [47] Woodall J Jr, Tucci M, Mishra A, et al. Cellular effects of platelet rich plasmainterleukin1 release from prp treated macrophages. Biomed Sci Instrum. 2008;44: 489-494. [48] Xie X, Zhao S, Wu H, et al. Platelet-rich plasma enhances autograft revascularization and reinnervation in a dog model of anterior cruciate ligament reconstruction. J Surg Res.2013;183: 214-222. [49] Silva A, Sampaio R. Anatomic ACL reconstruction: Does the platelet-rich plasma accelerate tendon healing? Knee Surg Sports Traumatol Arthrosc.2009; 17:676-682. [50] Cervellin M, de Girolamo L, Bait C, et al. Autologous platelet-rich plasma gel to reduce donor-site morbidity after patellar tendon graft harvesting for anterior cruciate ligament reconstruction: A randomized, controlled clinical study.Knee Surg Sports Traumatol Arthrosc.2012;20:114-120. [51] Seijas R, Rius M, Ares O, et al. Healing of donor site in bone-tendon-bone ACL reconstruction accelerated with plasma rich in growth factors: A randomized clinical trial. Knee Surg Sports Traumatol Arthrosc in press, available online 27 November.2013. doi:10.1007/s00167-013-2787-2. [52] Kohno T, Ishibashi Y, Tsuda E, et al. Immunohistochemical demonstration of growth factors at the tendon-bone interface in anterior cruciate ligament reconstruction using a rabbit model. J Orthop Sci.2007;12:67-73. [53] Anderson K, Seneviratne AM, Izawa K, et al. Augmentation of tendon healing in an intraarticular bone tunnel with use of a bone growth factor. Am J Sports Med. 2001;29:689-698. [54] Ma CB, Kawamura S, Deng XH, et al. Bone morphogenetic proteins-signaling plays a role in tendon-to-bone healing: A study of rhBMP-2 and noggin. Am J Sports Med. 2007;35:597-604. [55] Kim HM, Galatz LM, Das R, et al. The role of transforming growth factor beta isoforms in tendon-to-bone healing. Connect Tissue Res.2011;52:87-98. [56] Sasaki K, Kuroda R, Ishida K, et al. Enhancement of tendon-bone osteointegration of anterior cruciate ligament graft using granulocyte colony-stimulating factor. Am J Sports Med.2008;36:1519-1527. [57] Yu Y, Bliss JP, Bruce WJ, et al. Bone morphogenetic proteins and Smad expression in ovine tendon-bone healing. Arthroscopy.2007;23:205-210. [58] Mutsuzaki H,Sakane M,Nakajima H,et al.Calciumphosphate-hybridized tendon directly promotes regeneration of tendon-bone insertion.J Biomed Mater Res A. 2004;70:319-327. [59] Emond CE, Woelber EB, Kurd SK, et al. A comparison of the results of anterior cruciate ligament reconstruction using bioabsorbable versus metal interference screws: A meta-analysis. J Bone Joint Surg Am.2011;93:572-580. [60] Pereira H, Correlo VM, Silva-Correia J, et al. Migration of “bioabsorbable” screws in ACL repair. How much do we know? A systematic review. Knee Surg Sports Traumatol Arthrosc.2013;21:986-994. [61] Farraro KF, Kim KE, Woo SL, et al.Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. J Biomech. 2014;47:1979-1986. [62] Murray MM, Fleming BC. Biology of anterior cruciate ligament injury and repair: Kappa Delta Ann Doner Vaughn Award paper 2013.J Orthop Res.2013;31: 1501-1506. [63] Murray MM, Fleming BC. Use of a bioactive scaffold to stimulate anterior cruciate ligament healing also minimizes posttraumatic osteoarthritis after surgery. Am J Sports Med.2013;41:1762-1770. [64] Walsh WR, Stephens P, Vizesi F, et al. Effects of low-intensity pulsed ultrasound on tendonbone healing in an intra-articular sheep knee model. Arthroscopy 2007;23:197-204. [65] Leung KS, Lee WS, Tsui HF, et al. Complex tibial fracture outcomes following treatment with low-intensity pulsed ultrasound. Ultrasound Med Biol 2004;30:389-395. [66] Einhorn TA. Enhancement of fracture-healing.J Bone Joint Surg Am. 1995;77:940-956. [67] Cook SD, Salkeld SL, Popich-Patron LS, et al. Improved cartilage repair after treatment with low-intensity pulsed ultrasound.Clin Orthop Relat Res.2001;(391 suppl):S231-S243. [68] Takakura Y, Matsui N, Yoshiya S, et al. Low-intensity pulsed ultrasound enhances early healing of medial collateral ligament injuries in rats. J Ultrasound Med. 2002;21:283-288. [69] Lovric V, Ledger M, Goldberg J, et al.The effects of lowintensity pulsed ultrasound on tendon-bone healing in a transosseous-equivalent sheep rotator cuff model. Knee Surg Sports Traumatol Arthrosc.2013;21: 466-475. [70] Qin L, Lu H, Fok P, et al.Low-intensity pulsed ultrasound accelerates osteogenesis at bone-tendon healing junction. Ultrasound Med Biol. 2006;32: 1905-1911. [71] Sun JS, Hong RC, Chang WH, et al. In vitro effects of low-intensity ultrasound stimulation on the bone cells. J Biomed Mater Res.2001;57:449-456. [72] Doan N, Reher P, Meghji S, et al. In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes. J Oral Maxillofac Surg.1999;57: 409-419. discussion 420. [73] Lu H, Qin L, Cheung W, et al.Lowintensity pulsed ultrasound accelerated bone-tendon junction healing through regulation of vascular endothelial growth factor expression and cartilage formation. Ultrasound Med Biol.2008;34:1248-1260. [74] Suzuki A, Takayama T, Suzuki N, et al.Daily low-intensity pulsed ultrasound stimulates production of bone morphogenetic protein in ROS 17/2.8 cells.J Oral Sci. 2009;51:29-36. [75] Chow DH, Suen PK, Huang L, et al. Extracorporeal shockwave enhanced regeneration of fibrocartilage in a delayed tendon-bone insertion repair model.J Orthop Res. 2014;32:507-514. [76] Aragona J, Parsons JR, Alexander H, et al. Medial collateral ligament replacement with a partially absorbable tissue scaffold. Am J Sports Med 1983;11: 228-233. [77] Musahl V, Abramowitch SD, Gilbert TW, et al. The use of porcine small intestinal submucosa to enhance the healing of the medial collateral ligamentdA functional tissue engineering study in rabbits. J Orthop Res. 2004;22:214-220. [78] Liang R, Woo SL, Takakura Y, et al. Long-term effects of porcine small intestine submucosa on the healing of medial collateral ligament: A functional tissue engineering study. J Orthop Res.2006;24:811-819. [79] Liang R, Woo SL, Nguyen TD, et al. Effects of a bioscaffold on collagen fibrillogenesis in healing medial collateral ligament in rabbits.J Orthop Res. 2008;26: 1098-1104. [80] Hildebrand KA, Woo SL, Smith DW, et al.The effects of platelet-derived growth factor-BB on healing of the rabbit medial collateral ligament. An in vivo study. Am J Sports Med 1998;26:549-554. [81] Yoshioka T, Kanamori A, Washio T, et al.The effects of plasma rich in growth factors (PRGF-Endoret) on healing of medial collateral ligament of the knee. Knee Surg Sports Traumatol Arthrosc.2013;21:1763-1769. |
[1] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[2] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
[3] | Xu Dongzi, Zhang Ting, Ouyang Zhaolian. The global competitive situation of cardiac tissue engineering based on patent analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 807-812. |
[4] | Wu Zijian, Hu Zhaoduan, Xie Youqiong, Wang Feng, Li Jia, Li Bocun, Cai Guowei, Peng Rui. Three-dimensional printing technology and bone tissue engineering research: literature metrology and visual analysis of research hotspots [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 564-569. |
[5] | Chang Wenliao, Zhao Jie, Sun Xiaoliang, Wang Kun, Wu Guofeng, Zhou Jian, Li Shuxiang, Sun Han. Material selection, theoretical design and biomimetic function of artificial periosteum [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 600-606. |
[6] | Liu Fei, Cui Yutao, Liu He. Advantages and problems of local antibiotic delivery system in the treatment of osteomyelitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 614-620. |
[7] | Li Xiaozhuang, Duan Hao, Wang Weizhou, Tang Zhihong, Wang Yanghao, He Fei. Application of bone tissue engineering materials in the treatment of bone defect diseases in vivo [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 626-631. |
[8] | Zhang Zhenkun, Li Zhe, Li Ya, Wang Yingying, Wang Yaping, Zhou Xinkui, Ma Shanshan, Guan Fangxia. Application of alginate based hydrogels/dressings in wound healing: sustained, dynamic and sequential release [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 638-643. |
[9] | Chen Jiana, Qiu Yanling, Nie Minhai, Liu Xuqian. Tissue engineering scaffolds in repairing oral and maxillofacial soft tissue defects [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 644-650. |
[10] | Xing Hao, Zhang Yonghong, Wang Dong. Advantages and disadvantages of repairing large-segment bone defect [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 426-430. |
[11] | Chen Siqi, Xian Debin, Xu Rongsheng, Qin Zhongjie, Zhang Lei, Xia Delin. Effects of bone marrow mesenchymal stem cells and human umbilical vein endothelial cells combined with hydroxyapatite-tricalcium phosphate scaffolds on early angiogenesis in skull defect repair in rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3458-3465. |
[12] | Wang Hao, Chen Mingxue, Li Junkang, Luo Xujiang, Peng Liqing, Li Huo, Huang Bo, Tian Guangzhao, Liu Shuyun, Sui Xiang, Huang Jingxiang, Guo Quanyi, Lu Xiaobo. Decellularized porcine skin matrix for tissue-engineered meniscus scaffold [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3473-3478. |
[13] | Mo Jianling, He Shaoru, Feng Bowen, Jian Minqiao, Zhang Xiaohui, Liu Caisheng, Liang Yijing, Liu Yumei, Chen Liang, Zhou Haiyu, Liu Yanhui. Forming prevascularized cell sheets and the expression of angiogenesis-related factors [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3479-3486. |
[14] | Liu Chang, Li Datong, Liu Yuan, Kong Lingbo, Guo Rui, Yang Lixue, Hao Dingjun, He Baorong. Poor efficacy after vertebral augmentation surgery of acute symptomatic thoracolumbar osteoporotic compression fracture: relationship with bone cement, bone mineral density, and adjacent fractures [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3510-3516. |
[15] | Liu Liyong, Zhou Lei. Research and development status and development trend of hydrogel in tissue engineering based on patent information [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3527-3533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||