Chinese Journal of Tissue Engineering Research ›› 2017, Vol. 21 ›› Issue (14): 2280-2284.doi: 10.3969/j.issn.2095-4344.2017.14.024
Previous Articles Next Articles
Yuan Zhen-zhong, Chen Yue-ping
Received:
2016-12-23
Online:
2017-05-18
Published:
2017-06-10
Contact:
Chen Yue-ping, Master’s supervisor, Chief physician, Ruikang Clinical College, Guangxi University of Chinese University, Nanning 530011, Guangxi Zhuang Autonomous Region, China
About author:
Yuan Zhen-zhong, Master, Ruikang Clinical College, Guangxi University of Chinese University, Nanning 530011, Guangxi Zhuang Autonomous Region, China
Supported by:
the Health Technology Research and Development Project of Guangxi Zhuang Autonomous Region, No. S201419-5; the Natural Science Foundation of Guangxi Zhuang Autonomous Region, No. 2015GXNSFAA139136; the Basic Ability Improvement Project of Young Teachers in Guangxi Colleges and Universities, No. KY2016YB204; the Scientific Research Project of Guangxi University of Chinese Medicine, No. 2015LX027; the Training Discipline-Bone Surgery Construction Project of Guangxi University of Chinese Medicine in 2014, No. J13167(7)
CLC Number:
Yuan Zhen-zhong, Chen Yue-ping. Application and characteristics of silk fibroin/chitosan scaffold in orthopaedic regenerative medicine[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(14): 2280-2284.
2.1 蚕丝丝素蛋白/壳聚糖支架支架的性质 2.1.1 蚕丝丝素蛋白/壳聚糖支架的组成及结构 壳聚糖是由甲壳素通过化学或脱乙酰酶抑制剂脱去乙酰基后而形成的衍生产物,是一种天然带正电的多糖,主要由β-(1,4)-N-乙酰基-D-葡萄糖和一小部分β-(1,4)-D-葡萄糖胺重复组成[3],其主要存在于真菌细胞壁、昆虫表皮,甲壳动物如虾、螃蟹和龙虾等骨骼中,易溶于pH < 6的醋酸、盐酸等溶液[4]。 丝素蛋白是从蚕丝中提取的一种天然生物蛋白,占原蚕丝的70%-80%,剩余的20%-30%由丝胶蛋白和少量的蜡质成分组成。因为多余的丝胶蛋白会导致炎症反应[5],未脱胶的纤维耐溶解[6],所以获取纯正的丝素蛋白溶液需要进行脱胶处理,丝素蛋白是由重链(蛋白相对分子质量约为390 000)和轻链(蛋白相对分子量约为 26 000)通过二硫键连接而形成的。重链是由以疏水性氨基酸为主形成的共聚物组成的,是机械性能的主要来源部分。轻链由大约47%的疏水性氨基酸残基组成,对重链适当的细胞分泌有重要作用。丝素蛋白主要由甘氨酸、丙氨酸、丝氨酸、酪氨酸等多种氨基酸组成,其主要有有SilkⅠ、SilkⅡ和 SilkⅡ三种结构形态,其功能各有不同[7]。 蚕丝丝素蛋白/壳聚糖支架主要通过氢键的结合而形成,当丝素蛋白与壳聚糖混合后,在壳聚糖中活性氨基团会形成氢键,不仅与壳聚糖中本身的羧基团结合,还与丝素蛋白羧基团结合。这使得纯丝素蛋白的水溶性α螺旋结构或盘状结构转变为β-折叠的稳定结构[8],从而使丝素蛋白形成稳定的、各方面性能良好的复合生物支架。 2.1.2 蚕丝丝素蛋白/壳聚糖支架的性能 壳聚糖作为组织工程材料其有着广泛的生物学特性,通过改变壳聚糖的分子质量及脱乙酰作用程度等可以获得不同的特性,如有良好的机械性、骨诱导性、低免疫原性等特性,此外还有抗菌性、抗氧化性、抗肿瘤等生物活性[3]。蚕丝丝素蛋白以其独特的结构、加工时的多功能性、良好的生物相容性及易杀菌性、热稳定性、化学可修饰性和可控的降解性[9],使其在临床上得到广泛应用。单独使用蚕丝丝素蛋白支架或壳聚糖支架均存在或多或少的不足,其中单独使用丝素蛋白支架存在骨诱导性不强、吸水性能弱,单独使用壳聚糖支架又存在降解性慢、体内不易吸收、细胞黏附性差等问题,所以研究上按照一定比例共混并通过技术加工后得到以复合支架的形式应用于组织工程,彼此弥补了自身的不足,同时具有了有很大的可控性。 蚕丝丝素蛋白/壳聚糖支架兼顾两者的优点,具有良好的生物相容性,能够保证细胞在支架上良好的生长。Deng等[10]通过对蚕丝蛋白/壳聚糖支架与骨髓间充质干细胞在体外培养的研究发现,兔骨髓间充质干细胞能够很好地黏附在支架上面,并且随着时间的推移细胞黏附率会增加,细胞的数量也会增多,细胞还可以长入支架内部,表明了蚕丝丝素蛋白/壳聚糖支架有很好的细胞相容性。除此之外,蚕丝丝素蛋白/壳聚糖支架还表现出成骨诱导性,Tong等[11]通过把成骨细胞hFOB1.19种植在蚕丝丝素蛋白/壳聚糖支架与单纯的壳聚糖支架上进行比较研究,发现蚕丝丝素蛋白/壳聚糖支架的细胞黏附率、细胞增殖等情况均比单纯壳聚糖支架好,此外还发现蚕丝丝素蛋白/壳聚糖支架能有诱导细胞生长和促进矿化结节的形成,间接说明蚕丝丝素蛋白/壳聚糖支架具有良好的成骨诱导性。同时蚕丝丝素蛋白/壳聚糖支架有一定的机械性能,能在不同应力条件下有一定的抗压能力,Zhang等[12]通过对蚕丝蛋白/壳聚糖支架间质量比例的研究发现,当壳聚糖与丝素蛋白质量比为6∶4时的弹性模量是符合正常关节软骨范围(4-15 kPa),表明了蚕丝丝素蛋白/壳聚糖支架的机械性能良好。丝素蛋白支架根据其制备方法及支架结构特点,在体内的降解是可控的[13]。同时蚕丝丝素蛋白/壳聚糖支架也能很好地在体内降解,具有良好的降解性,且对体内微环境无明显影响。Zeng等[8]通过冷冻干燥和交联技术制备蚕丝丝素蛋白/壳聚糖复合支架,通过物理或化学测试发现,40%丝素蛋白-60%壳聚糖的组合支架能有效降解,并对体内微环境不造成影响,同时体外实验表明改性后的40%丝素蛋白-60%壳聚糖组合支架具有良好的生物相容性,并且能促进成骨细胞生长矿化。 2.2 蚕丝丝素蛋白/壳聚糖支架在骨科再生医学领域的应用 2.2.1 骨组织修复 由于蚕丝丝素蛋白/壳聚糖支架具有较好的成骨诱导性和生物相容性,研究其在骨缺损修复中的作用时,为了增加支架的机械性,常常在蚕丝丝素蛋白/壳聚糖基础上添加机械强度较大的物质,如羟基磷灰石、磷酸钙骨水泥、藻酸盐等[14-16]。叶鹏等[17]将蚕丝丝素蛋白/壳聚糖/羟基磷灰石支架植入骨缺损位置,一段时间后骨缺损处有明显的骨组织生成,随着时间的延长骨髓腔再通,骨缺损处组织染色可见骨小梁和骨细胞,表明蚕丝丝素蛋白/壳聚糖/羟基磷灰石支架可较好地修复兔桡骨大段骨缺损。国外Ríos等[18]研究发现,蚕丝丝素蛋白/壳聚糖支架在体内能够促进骨的形成,他将从山羊肋骨中取下了的骨膜移植在山羊背阔肌上,然后将充满蚕丝丝素蛋白/壳聚糖支架和骨的间室植入骨膜上方,40 d后不同时间段的检测均可见新骨新骨形成,2个月后与单纯骨移植比较新骨形成能力相当,表明蚕丝丝素蛋白/壳聚糖支架可代替骨移植用于临床,促进骨再生。还有研究通过比较单一的蚕丝蛋白、壳聚糖以及蚕丝丝素蛋白/壳聚糖膜支架对人间充质干细胞分化的影响,发现蚕丝丝素蛋白/壳聚糖纳米纤维膜支架能够增强人间充质干细胞成骨分化和增殖的能力,表明蚕丝丝素蛋白/壳聚糖纳米纤维膜支架适合骨组织工程[19]。在骨修复治疗中蚕丝丝素蛋白/壳聚糖膜支架不总是单独使用,常以不同的形式及复合多种生物材料应用于实验研究。 2.2.2 软骨组织修复 由于蚕丝丝素蛋白能够为细胞黏附和增殖提供良好的环境,壳聚糖具有与黏多糖相似的结构,因此蚕丝丝素蛋白/壳聚糖支架在修复软骨方面同样表现出了良好的疗效。Bhardwaj等[20]在对软骨修复的研究中将牛软骨细胞种植在蚕丝丝素蛋白/壳聚糖支架上,发现牛软骨细胞能黏附在丝素蛋白/壳聚糖并良好的生长,在丝素蛋白/壳聚糖(1∶1)的混合支架上粘多糖和胶原蛋白形成的是最多的,并且形成的组织不管在什么状态下均有一定的抗压能力,表明蚕丝丝素蛋白/壳聚糖支架可作为代替合成软骨工程的细胞支架。他进一步通过研究蚕丝丝素蛋白/壳聚糖支架对骨髓间充质干细胞向软骨方向分化的影响,发现支架与大鼠骨髓间充质干细胞在体外培养时,骨髓间充质干细胞有向软骨分化的能力,因此说明蚕丝丝素蛋白/壳聚糖支架适合作为软骨修复的组织工程支架[21]。同样的Deng等[22]通过将骨髓间充质干细胞种植在蚕丝丝素蛋白/壳聚糖支架上来治疗兔膝关节软骨缺损的研究发现,骨髓间充质干细胞能很好地在支架上增殖分化,实验组支架能被吸收,Ⅱ型胶原免疫组化染色阳性,软骨缺损几乎被修复。表明蚕丝丝素蛋白/壳聚糖支架能够作为骨髓间充质干细胞的载体用于治疗软骨损伤。 2.2.3 软组织的修复 伤口愈合:自体皮肤移植是伤口不愈合常用的治疗方法,但是常受供皮区皮肤条件及供皮面积限制,因此,需要有新的替代品来进行创面的修复。壳聚糖可以加速伤口的愈合,促进炎症细胞的功能,早在1999年有学者发现在伤口愈合初期壳聚糖能够促进中性粒细胞的浸润,同时促进胶原蛋白的产生[23],然而再生丝素蛋白膜能够维持成纤维细胞生长因子和血小板衍化生长因子稳定的表达,从而展现出促进血管形成和加速伤口愈合的潜能。此外丝素蛋白膜对成纤维细胞和血管内皮细胞的生长和生物功能没有不良影响,同时不干扰血管内皮生长因子、Ang-1、成纤维细胞生长因子和血小板衍化生长因子等血管生长因子的分泌[24],因此壳聚糖、生丝素蛋白均可适用于伤口愈合的良好生物医学材料。以复合形成出现的蚕丝丝素蛋白/壳聚糖支架在伤口愈合方面应用也很广泛,研究表明蚕丝丝素蛋白/壳聚糖共混的生物膜能够促进成纤维细胞生长,具有表达Ⅰ型胶原蛋白维持细胞的功能,在皮肤工程中广泛应用[25]。间接说明蚕丝丝素蛋白/壳聚糖支架对伤口愈合具有良好的作用。更有研究表明,壳聚糖/丝素蛋白复合纳米纤维膜由于有抑制大肠杆菌生长及能够使成纤维细胞黏附和增殖扩散的能力,被用于伤口辅料中,促进伤口愈合[26]。最近还有许多将种子细胞种植在蚕丝丝素蛋白/壳聚糖支架上来治疗伤口不愈合的研究,Altman等[27]通过将脂肪间充质干细胞种植在丝素蛋白/壳聚糖支架上并移植到小鼠伤口来研究支架对伤口愈合的影响,发现术后8 d伤口愈合程度明显增强,术后2周微血管密度明显增高,术后4周干细胞能够分化成表皮上皮细胞,充分说明了丝素蛋白/壳聚糖支架在促进干细胞向微血管组织、内皮细胞等分化,从而促进伤口愈合。 脊髓神经损伤修复:由于挤压、挫裂、牵拉或锐器、枪弹等原因容易导致神经损伤,且由于神经自身修复能力非常低下,神经损伤修复比较困难,脊髓损伤有可能导致永久性的残疾,给患者及社会带来了较大负担。因此有学者尝试通过利用研究生物组织工程支架治疗脊髓神经损伤。Bozkurt等[28]将充满神经祖母干细胞的壳聚糖管道植入损伤脊髓中,发现神经祖母干细胞加壳聚糖组可增强细胞生存能力,并且不会使原有损伤部位加重。Shen等[29]研究表明,300 nm丝素蛋白支架对指导嗅鞘细胞附着、生长、体外迁移起到重要作用,适用于脊髓损伤修复组织工程支架的构建。蚕丝丝素蛋白/壳聚糖支架在其中也充当了很重要的角色,在组织工程中,一个适合的种子细胞和生物相容性良好的支架材料是直接影响脊髓损伤修复的原因,基于此国内Ji等[30]将脂肪干细胞种植在蚕丝丝素蛋白/壳聚糖支架上,通过研究细胞对支架的黏附特性、细胞在支架上的增殖情况及细胞在支架上的形态,发现蚕丝丝素蛋白/壳聚糖支架与脂肪干细胞有很好的细胞相容性,从而为利用组织工程方法修复脊髓损伤提供了基础。此外Wei等[31]也采用了类似的方法,将蚕丝丝素蛋白/壳聚糖与脂肪干细胞作为构架用于坐骨神经损伤的修复,发现蚕丝丝素蛋白/壳聚糖支架+脂肪干细胞组大鼠神经连续性和功能性得到明显恢复,神经支配的相应肌肉功能也得到了很好恢复,因此蚕丝丝素蛋白/壳聚糖支架作为脂肪干细胞的载体媒介用于神经再生修复是不错的选择。同时有学者则采用以壳聚糖/丝素蛋白为基础的许旺细胞源性细胞外基质改性支架来桥接10 mm缺损的大鼠坐骨神经,研究证实该支架可获得神经再生的效果,并且是安全的,再次说明了蚕丝丝素蛋白/壳聚糖支架在神经组织工程中的应用价值[32]。而最近研究则通过将骨髓单核细胞种植在蚕丝丝素蛋白/壳聚糖来修复大鼠坐骨神经损伤,研究发现该组织工程复合支架能够实现神经再生,接近神经自体移植,同时认为骨髓单核细胞对轴突生在有一定影响[33]。 其他软组织损伤:蚕丝丝素蛋白/壳聚糖支架还可修复和重建腹肌筋膜的缺损,Gobin等[34]通过镶嵌技术将蚕丝丝素蛋白/壳聚糖支架植入缺损的腹壁,4周后发现蚕丝丝素蛋白/壳聚糖支架和去细胞真皮基质可在宿主组织中重建,并且蚕丝丝素蛋白/壳聚糖支架能很好地与相邻组织生长,可完好地修复腹壁损伤,修复区域机械强度和原生腹壁的机械强度相当,在未来腹壁损伤的重建过过程中具有非常大的潜力,是一种很好的生物材料。另外在肿瘤导致的软组织缺损方面,蚕丝丝素蛋白/壳聚糖支架也发挥了重大作用,Gupta等[35]将大黄素和蚕丝丝素蛋白/壳聚糖支架结合治疗大鼠乳腺肿瘤,发现可降低乳腺癌细胞体外生存能力,减少体内肿瘤发生,支架降解等,表明载有药物的蚕丝丝素蛋白/壳聚糖支架能够防止肿瘤复发及软组织缺损的重建。"
[1]Kim BS,Mooney DJ.Development of biocompatible synthetic extra cellular atrices for tissue engineering.Trends Biotechnol. 1998;16(5):224-230.[2]Amini AR,Laurencin CT,Nukavarapu SP.Bone Tissue Engineering: Recent Advances and Challenges.Crit Rev Biomed Eng.2012;40(5):363-408. [3]Younes I,Rinaudo M.Chitin and chitosan preparation from marine sources. Structure, properties and applications.Mar Drugs.2015;13(3):1133-1174.[4]Rinaudo M.Chitin and chitosan:Properties and applications. Prog Polym Sci.2006;31:603-632.[5]Altman GH,Diaz F,Jakuba C,et al.Silk-based biomaterials. Biomaterials.2003;24:401-416.[6]Yamada H,Nakao H,Takasu Y,et al.Preparation of undegraded native molecular fibroin solution from silkworm cocoons.Mater Sci Eng C.2001;14:41-46. [7]Wray LS,Hu X,Gallego J,et al.Effect of Processing on Silk-Based Biomaterials: Reproducibility and Biocompatibility. J Biomed Mater Res B Appl Biomater.2011;99(1): 89-101.[8]Zeng S,Liu L,Shi Y,et al.Characterization of Silk Fibroin/Chitosan 3D Porous Scaffold and In Vitro Cytology. PLoS One.2015;10(6):e0128658. [9]Vepari C,Kaplan DL.Silk as a Biomaterial.Prog Polym Sci. 2007;32(8-9):991-1007.[10]Deng J,She RF,Huang WL,et al.Fibroin protein/chitosan scaffolds and bone marrow mesenchymal stem cells culture in vitro].Genet Mol Res.2014;13(3):5745-5753.[11]Tong S,Xu DP,Liu ZM,et al.Construction and in vitro characterization of three-dimensional silk fibroin chitosan scaffolds.Dent Mater J.2015;34(4):475-484.[12]Zhang P,Wang W.Preparation of silk fibroin-chitosan scaffolds and their properties.Zhong guo Xiu Fu Chong Jian Wai Ke Za Zhi.2013;27(12):1517-1522. [13]Wang Y,Rudym DD,Walsh A,et al.In vivo Degradation of Three-Dimensional Silk Fibroin Scaffolds.Biomaterials. 2008; 29(24-25):3415-3428.[14]Lin JH,Chen CK,Wen SP,et al.Poly-L-lactide/sodium alginate/chitosan microsphere hybrid scaffolds made with braiding manufacture and adhesion technique: Solution to the incongruence between porosity and compressive strength.Mater Sci Eng C Mater Biol Appl.2015;52:111-20.[15]Shavandi A,Bekhit Ael-D,Ali MA,et al.Development and characterization of hydroxyapatite/β-TCP/chitosan composites for tissue engineering applications.Mater Sci Eng C Mater Biol Appl.2015;56:481-493.[16]Weir MD,Xu HH.Osteoblastic induction on calcium phosphate cement-chitosan constructs for bone tissue engineering.J Biomed Mater Res A.2010;94(1):223-233.[17]叶鹏,马立坤,黄文良等.骨组织工程三维复合支架修复兔桡骨骨缺损[J].中国组织工程研究,2014,18(3):383-388.[18]Ríos CN,Skoracki RJ,Miller MJ,et al.In vivo bone formation in silk fibroin and chitosan blend scaffolds via ectopically grafted periosteum as a cell source: a pilot study.Tissue Eng Part A.2009;15(9):2717-2725.[19]Lai GJ,Shalumon KT,Chen SH,et al.Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells.Carbohydr Polym.2014;111:288-297.[20]Bhardwaj N,Kundu SC.Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Biomaterials.2012;33(10):284828-284857.[21]Bhardwaj N,Nguyen QT,Chen AC,et al.Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials. 2011;32(25):5773-5781.[22]Deng J,She R,Huang W,et al.A silk fibroin/chitosan scaffold in combination with bone marrow-derived mesenchymal stem cells to repair cartilage defects in the rabbit knee.J Mater Sci Mater Med.2013;24(8):2037-2046.[23]Ueno H,Yamada H,Tanaka I,et al.Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs.Biomaterials.1999;20(15):1407-1414.[24]Liu TL,Miao JC,Sheng WH,et al.Cytocompatibility of regenerated silk fibroin film: a medical biomaterial applicable to wound healing.J Zhejiang Univ Sci B.2010;11(1):10-16.[25]Luangbudnark W,Viyoch J,Laupattarakasem W,et al. Properties and Biocompatibility of Chitosan and Silk Fibroin Blend Films for Application in Skin Tissue Engineering. ScientificWorldJournal.2012;2012:697201.[26]Cai ZX,Mo XM,Zhang KH,et al.Fabrication of Chitosan/Silk Fibroin Composite Nanofibers for Wound-dressing Applications.Int J Mol Sci.2010;11(9):3529-3539.[27]Altman AM,Yan Y,Matthias N,et al.IFATS collection: human adipose-derived stem cells seeded on a silk fibroin–chitosan scaffold enhance wound repair in a murine soft tissue injury model. Stem Cells.2009;27:250.[28]Bozkurt G,Mothe AJ,Zahir T,et al.Chitosan channels containing spinal cord-derived stem/progenitor cells for repair of subacute spinal cord injury in the rat.Neurosurgery.2010;67:1733-1744.[29]Shen Y,Qian Y,Zhang H,et al.Guidance of olfactory ensheathing cell growth and migration on electrospun silk fibroin scaffolds.Cell Transplant.2010;19:147-157.[30]Ji W,Zhang Y,Hu S,et al.Biocompatibility study of a silk fibroin-chitosan scaffold with adipose tissue-derived stem cells in vitro.Exp Ther Med.2013;6(2):513-518. [31]Wei Y,Gong K,Zheng Z,et al.Chitosan/silk fibroin-based tissue-engineered graft seeded with adipose-derived stem cells enhances nerve regeneration in a rat model.J Mater Sci Mater Med.2011;22(8):1947-1964.[32]Gu Y,Zhu J,Xue C,et al.Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps.Biomaterials. 2014;35(7): 2253-2263. [33]Yao M,Zhou Y,Xue C,et al.Repair of rat sciatic nerve defect by using allogeneic bone marrow mononuclear cells combined with chitosan/silk fibroin scaffold.Cell Transplant.2016;25(5): 983-993.[34]Gobin AS,Butler CE,Mathur AB.Repair and regeneration of the abdominal wall musculofascial defect using silk fibroin-chitosanblend.Tissue Eng.2006;12(12):3383-33394.[35]Gupta V,Mun GH,Choi B,et al.Repair and reconstruction of a resected tumor defect using a composite of tissue flap-nanotherapeutic-silk fibroin and chitosan scaffold.Ann Biomed Eng.2011;39(9):2374-2387.[36]曾超,朱美峰,徐宝山,等.新型丝素蛋白多孔支架复合兔髓核细胞体外构建组织工程化髓核的实验研究[J].中国矫形外科杂志, 2014,22(11):1018-1024.[37]Altman GH,Horan RL,Lu HH,et al.Silk matrix for tissue engineered anteriorcruciate ligaments.Biomaterials.2002; 23(20):4131-4141. |
[1] | Yao Xiaoling, Peng Jiancheng, Xu Yuerong, Yang Zhidong, Zhang Shuncong. Variable-angle zero-notch anterior interbody fusion system in the treatment of cervical spondylotic myelopathy: 30-month follow-up [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1377-1382. |
[2] | An Weizheng, He Xiao, Ren Shuai, Liu Jianyu. Potential of muscle-derived stem cells in peripheral nerve regeneration [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1130-1136. |
[3] | Zhang Jinglin, Leng Min, Zhu Boheng, Wang Hong. Mechanism and application of stem cell-derived exosomes in promoting diabetic wound healing [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1113-1118. |
[4] | Le Guoping, Zhang Ming, Xi Licheng, Luo Hanwen. Preparation and in vitro evaluation of vancomycin hydrochloride@polylactic acid-glycolic acid copolymer-chitosan-hyaluronic acid composite sustained-release microspheres [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 528-534. |
[5] | He Yunying, Li Lingjie, Zhang Shuqi, Li Yuzhou, Yang Sheng, Ji Ping. Method of constructing cell spheroids based on agarose and polyacrylic molds [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 553-559. |
[6] | He Guanyu, Xu Baoshan, Du Lilong, Zhang Tongxing, Huo Zhenxin, Shen Li. Biomimetic orientated microchannel annulus fibrosus scaffold constructed by silk fibroin [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 560-566. |
[7] | Chen Xiaoxu, Luo Yaxin, Bi Haoran, Yang Kun. Preparation and application of acellular scaffold in tissue engineering and regenerative medicine [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 591-596. |
[8] | Kang Kunlong, Wang Xintao. Research hotspot of biological scaffold materials promoting osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 597-603. |
[9] | Shen Jiahua, Fu Yong. Application of graphene-based nanomaterials in stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 604-609. |
[10] | Zhang Tong, Cai Jinchi, Yuan Zhifa, Zhao Haiyan, Han Xingwen, Wang Wenji. Hyaluronic acid-based composite hydrogel in cartilage injury caused by osteoarthritis: application and mechanism [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 617-625. |
[11] | Li Hui, Chen Lianglong. Application and characteristics of bone graft materials in the treatment of spinal tuberculosis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 626-630. |
[12] | Gao Cangjian, Yang Zhen, Liu Shuyun, Li Hao, Fu Liwei, Zhao Tianyuan, Chen Wei, Liao Zhiyao, Li Pinxue, Sui Xiang, Guo Quanyi. Electrospinning for rotator cuff repair [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 637-642. |
[13] | Guan Jian, Jia Yanfei, Zhang Baoxin , Zhao Guozhong. Application of 4D bioprinting in tissue engineering [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(3): 446-455. |
[14] | Huang Bo, Chen Mingxue, Peng Liqing, Luo Xujiang, Li Huo, Wang Hao, Tian Qinyu, Lu Xiaobo, Liu Shuyun, Guo Quanyi . Fabrication and biocompatibility of injectable gelatin-methacryloyl/cartilage-derived matrix particles composite hydrogel scaffold [J]. Chinese Journal of Tissue Engineering Research, 2022, 10(16): 2600-2606. |
[15] | Liu Jiali, Suo Hairui, Yang Han, Wang Ling, Xu Mingen. Influence of lay-down angles on mechanical properties of three-dimensional printed polycaprolactone scaffolds [J]. Chinese Journal of Tissue Engineering Research, 2022, 10(16): 2612-2617. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||