Chinese Journal of Tissue Engineering Research ›› 2017, Vol. 21 ›› Issue (5): 766-772.doi: 10.3969/j.issn.2095-4344.2017.05.019
Previous Articles Next Articles
Pan Ya-qiong1, Dai Zhong1, Zuo Chang-qing1, Wang Zong-gui2
Online:
2017-02-18
Published:
2017-03-20
Contact:
Wang Zong-gui, Master, Lecturer, Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
About author:
Pan Ya-qiong, Studying for master’s degree, Department of Pharmacology, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
Supported by:
the National Natural Science Foundation of China, No. 81101357
CLC Number:
Pan Ya-qiong, Dai Zhong, Zuo Chang-qing, Wang Zong-gui. Effect of long non-coding RNA NR_033474 on proliferation of C3H10T1/2 mesenchymal stem cells[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(5): 766-772.
2.1 长链非编码RNA NR_033474编码蛋白性能鉴定 根据CPAT软件分析结果,NR_033474序列是长度为1 334 bp的RNA分子,其编码蛋白的概率得分为0.059 7,远低于蛋白编码阈值0.44(当编码蛋白的概率≥0.44,表明其为编码序列;而当编码蛋白的概率<0.44时,表明其为非编码序列),表明是非编码序列,属于长链非编码RNA。 2.2 qRT-PCR鉴定NR_033474在C3H10T1/2间质干细胞生长过程中的时序表达模式 qRT-PCR结果显示,细胞生长汇合后长链非编码RNA NR_033474表达逐渐增加,与对数生长期比较差异有显著性意义(P < 0.05),见图1。 2.3 长链非编码RNA NR_033474过表达对C3H10T1/2间质干细胞生长的影响 以2-??Cq法统计lncRNA NR_033474的相对含量,以β-actin为内参基因。与对照组相比,实验组长链非编码RNA NR_033474表达量约上调100倍(P < 0.01),见图2。 将对照组和实验组稳定株种植6孔板,从生长第3 天开始,实验组稳定株生长速度明显受到抑制,第3,5天细胞生长与对照组比较差异有显著性意义(P < 0.05),见图3,表明过表达长链非编码RNA NR_033474具有抑制C3H10T1/2间质干细胞增殖的作用。 2.4 长链非编码RNA NR_033474过表达对C3H10T1/2间质干细胞周期的影响 与对照组比较,实验组能够使G2/M期细胞数由7.48%增加到15.94%,相应处于S期的细胞则从38.77%降到33.35%(P < 0.05),见图4。 2.5 过表达NR_033474对C3H10T1/2间质干细胞周期相关蛋白表达水平的影响 与对照组相比,实验组G2/M期调控蛋白Cyclin B1和CDK1表达水平下调,G0/G1期调控蛋白P53和Cyclin D1表达水平无变化,见图5。实验结果从蛋白水平揭示,长链非编码RNA NR_033474通过减少Cyclin B1和CDK1蛋白的表达诱导C3H10T1/2间质干细胞出现G2/M期阻滞,并未对C3H10T1/2细胞的G0/G1期产生影响。"
[1] Ullah I,Subbarao RB,Rho GJ.Human mesenchymal stem cells - current trends and future prospective.Biosci Rep. 2015;35(2):e00191.[2] Anthony BA. Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends in Immunology. 2014;35(1): 32-37.[3] Nagpal A,Juttner C,Hamilton-Bruce MA,et al.Stem cell therapy clinical research: A regulatory conundrum for academia.Adv Drug Deliv Rev.2016. pii: S0169-409X(16)30275-7. doi: 10.1016/j.addr.2016.10.001. [Epub ahead of print][4] Chong MS,Ng WK,Chan JK.Concise Review: Endothelial Progenitor Cells in Regenerative Medicine: Applications and Challenges.Stem Cells Transl Med.2016;5(4):530-538.[5] Udalamaththa VL,Jayasinghe CD,Udagama PV.Potential role of herbal remedies in stem cell therapy: proliferation and differentiation of human mesenchymal stromal cells. Stem Cell Res Ther.2016;7(1):110.[6] Liu W,Mao SY,Zhu WY.Impact of tiny miRNAs on cancers.World J Gastroenterol.2007;13(4):497-502.[7] Voorhoeve PM,Sage CL,Schrier M,et al.A A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors.Cell.2006;124(6):1169-1181.[8] Sana J,Faltejskova P,Svoboda M,et al. Novel classes of non-coding RNAs and cancer. J Transl Med.2012;10(1): 808-814.[9] 王嘉.MicroRNA-125b在小鼠胚胎干细胞分化过程中的作用和机制探讨[D].中国科学院研究生院,2012.[10] Wang Y,Baskerville S,Shenoy A,et al.Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation.Nat Genet.2008;40(12): 1478-1483.[11] Mizuno Y,Yagi K,Tokuzawa Y,et al.miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation.Biochem Biophys Res Commun. 2008;368(2): 267-272.[12] Wang Y,Melton C,Li YP,et al.miR-294/miR-302 Promotes Proliferation, Suppresses G1-S Restriction Point, and Inhibits ESC Differentiation through Separable Mechanisms. Cell Rep. 2013;4(1):99-109.[13] 毛晨熙,陆地,孙成超.miR-193通过细胞周期相关蛋白调控大鼠骨髓间充质干细胞的增殖能力[J].中国病理生理杂志,2014, 30(4):645-650.[14] Kim DY,Sung JH.Regulatory role of microRNAs in the proliferation and differentiation of adipose-derived stem cells. Histol Histopathol.2017;32(1):1-10.[15] Wang Y,Jiaqi C,Zhaoying C,et al.MicroRNA-506-3p regulates neural stem cell proliferation and differentiation through targeting TCF3.Gene.2016;593(1):193-200.[16] Li S,Zhao W,Xu Q,et al.MicroRNA-765 regulates neural stem cell proliferation and differentiation by modulating Hes1 expression.Am J Transl Res.2016;8(7):3115-3123.[17] Murai K,Sun G,Ye P,et al.The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model.Nat Commun.2016; 7:10965.[18] Massah S, Beischlag TV, Prefontaine GG. Epigenetic events regulating monoallelic gene expression. Critical Reviews in Biochemistry and Molecular Biology.2015;50(4):1-22.[19] Cabili MN,Trapnell C,Goff L,et al.Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses.Genes Dev.2011;25(18): 1915-1927.[20] Djebali S,Davis CA,Merkel A,et al.Landscape of transcription in human cells. Nature.2012;489(7414):101-108.[21] Papait R, Kunderfranco P, Stirparo GG, et al. Long Noncoding RNA: a New Player of Heart Failure? Journal of Cardiovascular Translational Research.2013;6(6):876-883.[22] Guttman M,Donaghey J,Carey BW,et al.lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477(7364):295-300.[23] Xing YH, Bai Z, Liu CX, et al. Research progress of long noncoding RNA in China. Iubmb Life.2016. 68(11):887-893[24] Rinn JL,Chang HY.Genome regulation by long noncoding RNAs. Biochemistry.2012;81(81):145-166.[25] Engreitz JM,Pandyajones A,Mcdonel P,et al.The Xist lncRNA exploits three-dimensional genome architecture to spread across the X-chromosome. Science.2013; 341(6147): L35-L38.[26] Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nature Reviews Genetics. 2014;15(1):7-21.[27] Ding LJ,Li Y,Wang SD,et al.Long Noncoding RNA lncCAMTA1 Promotes Proliferation and Cancer Stem Cell-Like Properties of Liver Cancer by Inhibiting CAMTA1.Int J Mol Sci.2016; 17(10):E1617.[28] Wang S,Liu F,Deng J,et al.Long Noncoding RNA ROR Regulates Proliferation, Invasion, and Stemness of Gastric Cancer Stem Cell.Cell Reprogram.2016;18(5):319-326.[29] Chen Q,Liu X,Xu L,et al.Long non-coding RNA BACE1-AS is a novel target for anisomycin-mediated suppression of ovarian cancer stem cell proliferation and invasion. Oncol Rep.2016;35(4):1916-1924.[30] Han Y,Zhou L,Wu T,et al.Downregulation of lncRNA-MALAT1 Affects Proliferation and the Expression of Stemness Markers in Glioma Stem Cell Line SHG139S.Cell Mol Neurobiol.2016; 36(7):1097-1107.[31] Hu K,Zhang J,Liang M.LncRNA AK015322 promotes proliferation of spermatogonial stem cell C18-4 by acting as a decoy for microRNA-19b-3p.In Vitro Cell Dev Biol Anim.2016. [Epub ahead of print][32] Ratajczak MZ.Igf2-H19, an imprinted tandem gene, is an important regulator of embryonic development, a guardian of proliferation of adult pluripotent stem cells, a regulator of longevity, and a 'passkey' to cancerogenesis.Folia Histochem Cytobiol.2012;50(2):171-179.[33] Zhang L,Chen S,Bao N,et al.Sox4 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cell via activation of long noncoding RNA DANCR.J Mol Histol.2015;46(6):467-473.[34] Wang L,Park HJ,Dasari S,et al.CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model.Nucleic Acids Res.2013;41(6):e74.[35] Dhinsa BS,Adesida AB.Current clinical therapies for cartilage repair, their limitation and the role of stem cells.Curr Stem Cell Res Ther.2012;7(2):143-148.[36] Hayflick L.The limited in vitro lifetime of human diploid cell strains. Exp Cell Res.1965;37(3):614-636.[37] Baxter MA,Wynn RF,Jowitt SN,et al.Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion.Stem Cells.2004;22(5): 675-682.[38] Jia Q,Jiang W,Ni L.Down-regulated non-coding RNA (lncRNA-ANCR) promotes osteogenic differentiation of periodontal ligament stem cells.Arch Oral Biol.2014; 60(2):234-241.[39] Song G,Shen Y,Ruan Z,et al.LncRNA-uc.167 influences cell proliferation, apoptosis and differentiation of P19 cells by regulating Mef2c.Gene.2016;590(1):97-108.[40] Hunter T.Braking the cycle.Cell.1994;75(5):839-841.[41] Backeljauw PF,Dattani MT,Cohen P,et al.CHAPTER 10–Disorders of growth hormone/insulin-like growth factor secretion and action.Pediatric Endocrinol.2014; 12(10): 254-334.[42] Hunter T,Pines J. Cyclins and cancer.II: Cyclin D and CDK inhibitors come of age. Cell.1994;79(4):573-582.[43] Ji YK,Park SY,Lyoo HR,et al.Extended stability of cyclin D1 contributes to limited cell cycle arrest at G1-phase in BHK-21 cells with Japanese encephalitis virus persistent infection.J Microbiol.2015;53(1):77-83.[44] Lim S,Kaldis P.Cdks,cyclins and CKIs: roles beyond cell cycle regulation. Development.2013;140(15):3079-3093.[45] Wang Z,Fan M,Candas D,et al.Cyclin B1/Cdk1 coordinates mitochondrial respiration for cell-cycle G2/M progression.Dev Cell.2014;29(2):217-232.[46] Aleem E,Arceci RJ.Targeting cell cycle regulators in hematologic malignancies. Front Cell Dev Biol.2014;3(16):16.[47] El-Deiry WS,Harper JW,O'Connor PM,et al.WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis.Cancer Res.1994;54(5):1169-1174.[48] Bennett RL,Pan Y,Christian J,et al.The RAX/PACT-PKR stress response pathway promotes p53 sumoylation and activation, leading to G1 arrest.Cell Cycle.2012;11(2): 407-417.[49] Yan J,Jiang JY,Meng XN,et al.MiR-23b targets cyclin G1 and suppresses ovarian cancer tumorigenesis and progression.J Exp Clin Cancer Res.2016;35(1):1-10.[50] 吕细林,黄刚,肖曼,等.过表达长链非编码RNA H19促进miR-124-3p表达抑制肝癌细胞增殖[J].第三军医大学学报, 2016,38(6):554-559.[51] Rezaei PF,Fouladdel S,Ghaffari SM,et al.Induction of G1 cell cycle arrest and cyclin D1 down-regulation in response to pericarp extract of Baneh in human breast cancer T47D cells.Daru.2012;20(1):1-5. |
[1] | Yao Xiaoling, Peng Jiancheng, Xu Yuerong, Yang Zhidong, Zhang Shuncong. Variable-angle zero-notch anterior interbody fusion system in the treatment of cervical spondylotic myelopathy: 30-month follow-up [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1377-1382. |
[2] | Wang Jing, Xiong Shan, Cao Jin, Feng Linwei, Wang Xin. Role and mechanism of interleukin-3 in bone metabolism [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(8): 1260-1265. |
[3] | Xiao Hao, Liu Jing, Zhou Jun. Research progress of pulsed electromagnetic field in the treatment of postmenopausal osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(8): 1266-1271. |
[4] | An Weizheng, He Xiao, Ren Shuai, Liu Jianyu. Potential of muscle-derived stem cells in peripheral nerve regeneration [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1130-1136. |
[5] | Tian Chuan, Zhu Xiangqing, Yang Zailing, Yan Donghai, Li Ye, Wang Yanying, Yang Yukun, He Jie, Lü Guanke, Cai Xuemin, Shu Liping, He Zhixu, Pan Xinghua. Bone marrow mesenchymal stem cells regulate ovarian aging in macaques [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 985-991. |
[6] | Wen Dandan, Li Qiang, Shen Caiqi, Ji Zhe, Jin Peisheng. Nocardia rubra cell wall skeleton for extemal use improves the viability of adipogenic mesenchymal stem cells and promotes diabetes wound repair [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1038-1044. |
[7] | Zhu Bingbing, Deng Jianghua, Chen Jingjing, Mu Xiaoling. Interleukin-8 receptor enhances the migration and adhesion of umbilical cord mesenchymal stem cells to injured endothelium [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1045-1050. |
[8] | Fang Xiaolei, Leng Jun, Zhang Chen, Liu Huimin, Guo Wen. Systematic evaluation of different therapeutic effects of mesenchymal stem cell transplantation in the treatment of ischemic stroke [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1085-1092. |
[9] | Guo Jia, Ding Qionghua, Liu Ze, Lü Siyi, Zhou Quancheng, Gao Yuhua, Bai Chunyu. Biological characteristics and immunoregulation of exosomes derived from mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1093-1101. |
[10] | Zhang Jinglin, Leng Min, Zhu Boheng, Wang Hong. Mechanism and application of stem cell-derived exosomes in promoting diabetic wound healing [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1113-1118. |
[11] | Hou Jingying, Guo Tianzhu, Yu Menglei, Long Huibao, Wu Hao. Hypoxia preconditioning targets and downregulates miR-195 and promotes bone marrow mesenchymal stem cell survival and pro-angiogenic potential by activating MALAT1 [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1005-1011. |
[12] | Liang Xuezhen, Yang Xi, Li Jiacheng, Luo Di, Xu Bo, Li Gang. Bushen Huoxue capsule regulates osteogenic and adipogenic differentiation of rat bone marrow mesenchymal stem cells via Hedgehog signaling pathway [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1020-1026. |
[13] | Wang Jifang, Bao Zhen, Qiao Yahong. miR-206 regulates EVI1 gene expression and cell biological behavior in stem cells of small cell lung cancer [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1027-1031. |
[14] | Huang Chuanjun, Zou Yu, Zhou Xiaoting, Zhu Yangqing, Qian Wei, Zhang Wei, Liu Xing. Transplantation of umbilical cord mesenchymal stem cells encapsulated in RADA16-BDNF hydrogel promotes neurological recovery in an intracerebral hemorrhage rat model [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 510-515. |
[15] | Yang Sidi, Wang Qian, Xu Nuo, Wang Ronghan, Jin Chuanqi, Lu Ying, Dong Ming. Biodentine enhances the proliferation and differentiation of osteoblasts through upregulating bone morphogenetic protein-2 [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 516-520. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||