Chinese Journal of Tissue Engineering Research ›› 2016, Vol. 20 ›› Issue (34): 5149-5154.doi: 10.3969/j.issn.2095-4344.2016.34.021
Previous Articles Next Articles
Pan Xing-na1, Li Ya-xiong1, Jiang Li-hong2
Received:
2016-05-20
Online:
2016-08-19
Published:
2016-08-19
Contact:
Jiang Li-hong, Professor, Doctoral supervisor, the First People’s Hospital of Yunnan, Kunming 650032, Yunnan Province, China
About author:
Pan Xing-na, Studying for master’s degree, Department of Cardiovascular Surgery, Affiliated Yan’an Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China
Supported by:
the Joint Special Fund Project of Yunnan Provincial Science and Technology Department-Kunming Medical University, No. 2013FB187, 2013FB189; the Health Science and Technology Project of Yunnan, No. 2014NS208, 2014NS209
CLC Number:
Pan Xing-na, Li Ya-xiong, Jiang Li-hong. Tissue-engineered vascular scaffold materials[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(34): 5149-5154.
2.1 不可降解材料 不可降解材料主要有涤纶、聚四氟乙烯等,已被用于构建组织工程血管,用于大口径血管移植。理论上认为,涤纶移植物卷曲长轴能增加灵活性、弹性和扭结阻力,然而,这些特性因移植后组织再生而丧失[6]。聚四氟乙烯是一类具多孔结构的不可降解性聚合物,应用于中、大直径血管取得相对较好的中远期结果,然而,它的血液相容性和细胞相容性欠佳,内膜增生严重,血管塑形效果差,易形成血栓、狭窄血管瘤及感染等限制了其在小直径血管 (< 6 mm)中的应用。涤纶和聚四氟乙烯构建的6 mm以下直径小血管均未获得满意的效果[7],目前这些材料已逐渐被淘汰。 2.2 天然生物材料 常用的可降解天然生物支架材料主要包括胶原、脱细胞血管基质、纤维蛋白、丝素蛋白、壳聚糖等。以天然生物材料构建的组织工程血管支架具有天然的组织成分和结构,良好的生物相容性,能够提供细胞所需的信号,可促进细胞附着及保留分化功能。这些特点都比合成材料占据优势,被认为是最有希望的组织工程血管支架材料。 2.2.1 胶原 胶原本身存在一定的张力和机械应力,因其抗原性较低和生物可降解性良好,已被用于生物材料的研究中。1986年,Weinberg等[8]在体外培养下以胶原蛋白和血管细胞构建的血管模型,构建了第一根组织工程血管,引起世界轰动。Zhu等[9]将类人型胶原与透明质酸按不同质量比复合,对其进行冷冻干燥,制得内皮化的内膜层支架,并对类人型胶原/透明质酸血管支架的结构、机械强度、降解和生物相容性进行评价。结果表明,10∶1的类人型胶原/透明质酸复合材料作为组织工程腔型血管支架材料具有广泛应用前景。Koens等[10]利用高纯度的I型胶原纤维和弹力纤维制备出有3层结构的管状移植物(弹力蛋白-胶原蛋白-胶原蛋白),其类似于机体血管的3层结构,将其交链编织排列并肝素化后移植到猪双侧髂内动脉模型中,评价其作为血管的性能。结果显示,置入1周后,支架移植物完全通畅,并出现部分内皮化;1个月后,出现层状血栓导致移植血管闭塞。莫秀梅等[11]将乳酸己内酯共聚物纺丝液和胶原蛋白纺丝液进行单喷头静电纺丝,或分别进行双喷头静电纺丝,成功发明了具有良好力学性能和生物相容性的血管支架,其特殊的双层结构能够仿生天然血管结构。Fu等[12]应用静电纺丝技术制备明胶/聚己内酯和胶原蛋白/聚左旋乳酸己内酯复合支架用于构建组织工程血管,种植的人脐动脉平滑肌细胞生长和增殖良好,经过比较两种复合支架的性能后得出:纳米纤维胶原蛋白/聚左旋乳酸己内酯复合支架具有良好的力学及生物学性能,其可能成为血管组织工程理想的支架材料。实验表明,基于天然基质蛋白的杂交分子管状移植物在体内用于血管外科手术是可行的。但有研究表明,胶原纤维和胶原凝胶因其本身存在易导致血栓形成且过于僵硬等不利因素,限制了其临床应用[13]。故未来研究的重点在于如何对其进行修饰来提高支架的强度,使其在生物体内能够长时间耐受血流的冲击等。 2.2.2 脱细胞血管基质 脱细胞血管基质是较常用的天然生物材料之一,也是目前研究的热点,天然血管组织经过处理脱除细胞后,保留其原有的物理结构及性能,并且富含生长因子及细胞黏附信号,适于种植内皮细胞,能有效防止血栓形成,生物相容性及亲和性良好,非常符合体内血管生物学结构要求。高云鹤[14]联合利用胰蛋白酶和十二烷基硫酸钠对胎儿脐动脉进行脱细胞处理得到的血管支架,结果发现其内膜、中膜与外膜中的细胞成分己完全去除,而纤维及弹力纤维结构完整,细胞外基质成分(IV型胶原和层粘连蛋白5)仍有保留,表明该支架符合组织工程血管的结构及特性需求。汪川等[15]对人脐动脉进行脱细胞处理后制得的小口径组织工程血管支架,将兔皮肤成纤维细胞、下肢动脉平滑肌细胞和骨髓内皮祖细胞依次接种于纤维连接蛋白包被的血管支架上,并观察移植于兔颈动脉后的通畅情况。结果显示:人脐动脉脱细胞支架与兔骨髓内皮祖细胞构建的组织工程生物 血管移植于兔颈动脉可长期通畅。此外,亦有学者应用相近的方法对牛颈静脉[16]、马颈动脉[17]、猪主动脉[18]、犬颈动脉进行脱细胞处理[19],对脱细胞血管支架进行各方面性能的评估,体外实验及短期体内实验结果均较理想,但其应用前景尚缺乏中长期的大动物实验数据支持,特别是构建组织工程小直径血管支架方面,有待进一步研究。 2.2.3 纤维蛋白 纤维蛋白被广泛用作不同领域的组织工程支架材料。纤维蛋白可联合各种生长因子和其他成分,体外塑性获得支架,可作为理想支架材料的添加剂[20]。Brougham等[21]应用打针装填技术研制出一种用纤维蛋白、 胶原蛋白和糖胺聚糖 构建而成的加固的天然支架,种植人血管平滑肌细胞7 d后检测该支架中细胞介导的收缩功能与纤维蛋白凝胶作比较。结果显示,支架的抗压强度、拉伸强度、种植细胞的生存和增殖能力均明显增强,且直径无明显缩小。Aper等[22]研发了一种新型成型技术,通过高度压缩的纤维蛋白基质产生高度稳定的管状纤维蛋白段,该血管支架置入并替代羊的颈动脉,6个月后移植物表现出与自体动脉结构高度的相似性。该技术可能成为构建最优的人工血管移植物的有力工具。然而,由于纤维蛋白缺乏稳定性,限制了其应用。 2.2.4 丝素蛋白 丝素蛋白是从蚕丝中提取的天然高分子纤维蛋白,因其具有良好的伸缩性,且可按照需要制备成膜状、海绵状、网状等形状,已应用到组织工程皮肤[23]、组织工程骨等领域的研究中[24]。Dunne等[25]应用介电泳技术制备出对齐的三维纳米丝素-壳聚糖支架,结果表明该支架有利于新生血管的生成和分布,有修复一定大小组织缺损的潜能。Marelli等[26]应用静电纺丝技术制备丝素蛋白管状支架,力学测定显示:该支架的可承受压力明显高出正常生理值和病理值上限的2-4倍,表明该支架在理论上具有适宜血管移植的良好机械性能以及抵抗血流冲击的潜能。由于丝素蛋白管状支架的亲水性较差、降解慢等,限制了丝素蛋白材料实现“从实验室到临床”的转化,其是否会影响血栓形成还缺乏相应的研究,有待进一步评价。 2.2.5 壳聚糖 壳聚糖又称脱乙酰甲壳素,是一种天然聚阳离子多糖,在体内可被降解为氨基葡萄糖,能被人体所吸收,具有优良的生物相容性和可降解性。壳聚糖与其他材料混合成的复合物已被应用在构建组织工程骨[27]、组织工程皮肤等研究当中[28-29],而壳聚糖衍生物与聚酯的复合材料可用作人造血管。Yin等[30]应用静电纺丝技术联合不同比例的弹性材料聚左旋乳酸-己内酯、胶原蛋白和壳聚糖制备成复合型血管支架,并评价其生物相容性和力学性能。结果表明,按20∶5∶75的比例构建的混合血管支架具有良好拉伸强度、爆破压力和动力学顺应性,且种植内皮细胞的增生能力变强,说明其具有血管移植应用的潜力。近几十年来人们对壳聚糖支架材料进行了较多研究,例如:肝素化3D纳米纤维壳聚糖/聚己内酯复合血管支架[31]、类人的胶原/壳聚糖/聚乳酸复合血管支架[32]、聚左旋乳酸-聚己内酯/胶原蛋白/壳聚糖复合多层血管支架等[33],均取得良好的效果,为后期应用于临床提供许多实验依据,但是也存在许多问题亟待解决,何时能够真正应用于临床仍需深入研究。 可降解天然生物材料优点在于具有良好的细胞生物相容性和安全性,但因其生产成本比较昂贵而且不同批次材料之间的理化性质还会有所差异,所以目前很难用于大规模的批量生产,使其临床应用受到限制,而且材料本身存在的机械强度和韧性不足、降解速率过快等缺陷也是无法忽视的。 2.3 可降解高分子合成材料 目前,国内外研究较多的高分子合成材料主要有聚羟基乙酸、聚乳酸及两者的共聚物聚乳酸羟基乙酸、聚左旋乳酸、聚己内酯、聚羟基丁酯、聚磷酸酯、聚酸酐、聚乙烯醇等。它们的共同优点是:易获得,有较好的组织相容性,可控制其机械性能、降解率和微结构,能根据设计要求进行批量生产,已成为组织工程领域研究的热门材料。近年来许多学者应用静电纺丝技术将不同高分子聚合物按一定的比例进行混合共聚构建血管支架(尤其是组织工程小直径血管支架)方面已有较多研究,这能充分发挥相应聚合物的优势,可明显改善其物理和生物学性能。Sankaran等[34]将不同比例的聚乳酸和聚己内酯进行物理混合,再应用静电纺丝动态收集器 (1 500 RPM)控制支架的尺寸大小,成功制备了轴对齐的聚乳酸-聚己内酯3D纳米小直径血管支架。经检测,支架的生物学性能良好,种植人脐静脉内皮细胞的活性和增殖状况良好,表明这种支架可能成为小直径血管组织工程的理想材料。Vatankhah等[35]应用静电纺丝制造出热塑性聚氨酯-明胶复合小直径血管支架,其生物力学特性与自体血管相近,还能很好地维持种植在支架上的平滑肌细胞的收缩表型,证明该支架有用作血管移植的潜力。为了控制支架的弹性和抗凝特性,有学者制备了肝素化的聚左旋乳酸/聚左旋乳酸己内酯纳米纤维支架用于构建组织工程小直径血管,取得良好的效果[36]。 目前国内外大多学者应用高分子合成材料制备的血管支架,由于缺少细胞黏附、增殖和分化所需的各种生物信号分子,生物相容性较差[21],亲水性差,顺应性不理想,合成技术要求高,难以大规模生产,易受材料本身的性质影响,远期通畅率较低且缺乏中远期的实验数据支撑等因素使其应用于血管支架受到了限制,其作为血管替代材料应用于临床仍需更深入研究。"
[1] Bahlmann FH,De Groot K,Spandau JM,et al.Tissue engineering.New York: Liss;1988.
[2] Garg T,Singh O,Arora S,et al.Scaffold: a novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst.2012;29(1):1-63.
[3] Barsotti MC,Felice F,Balbarini A,et al.Fibrin as a scaffold for cardiac tissue engineering.Biotechnol Appl Biochem.2011;58(5):301-310.
[4] Breuer CK.The development and translation of the tissue-engineered vascular graft.J Pediatr Surg. 2011; 46(1):8-17.
[5] Rathore A,Cleary M,Naito Y,et al.Development of tissue engineered vascular grafts and application of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol.2012; 4(3): 257-272.
[6] S R,El C.Biomaterials for vascular tissue engineering. Regen Med.2010;1(5): 107-120.
[7] Naito Y,Shinoka T,Duncan D,et al.Vascular tissue engineering: towards the next generation vascular grafts.Adv Drug Deliv Rev. 2011;63(4-5): 312-323.
[8] Weinberg CB,Bell E.A blood vessel model constructed from collagen and cultured vascular cells.Science. 1986; 231(4736):397-400.
[9] Zhu C,Fan D,Wang Y.Human-like collagen/hyaluronic acid 3D scaffolds for vascular tissue engineering.Mater Sci Eng C Mater Biol Appl.2014;34:393-401.
[10] Koens MJ,Krasznai AG,Hanssen AE,et al.Vascular replacement using a layered elastin-collagen vascular graft in a porcine model: one week patency versus one month occlusion.Organogenesis. 2015; 11(3):105-121.
[11] 莫秀梅,吴桐.一种复合材料纳米纤维/纳米纱双层血管支架及其制备方法[P]. 2015-08-19.
[12] Fu W,Liu Z,Feng B,et al.Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering.Int J Nanomedicine.2014;9:2335-2344.
[13] Song Y,Feijen J,Grijpma DW,et al.Tissue engineering of small-diameter vascular grafts: a literature review.Clin Hemorheol Microcirc. 2011;49(1-4):357-374.
[14] 高云鹤.以脱细胞脐动脉为支架构建组织工程血管的研究[D].长春:吉林大学,2014.
[15] 汪川,李京倖,辛毅,等.人脱细胞脐动脉支架与兔骨髓内皮祖细胞构建组织工程血管的实验研究[J].心肺血管病杂志, 2014,33(4):586-591.
[16] Grandi C,Baiguera S,Martorina F,et al.Decellularized bovine reinforced vessels for small-diameter tissue-engineered vascular grafts.Int J Mol Med. 2011;28(3): 315-325.
[17] Boer U,Hurtado-Aguilar LG,Klingenberg M,et al.Effect of Intensified Decellularization of Equine Carotid Arteries on Scaffold Biomechanics and Cytotoxicity. Ann Biomed Eng.2015;43(11):2630-2641.
[18] Li Q,Huang C,Xu Z,et al.The fetal porcine aorta and mesenteric acellular matrix as small-caliber tissue engineering vessels and microvasculature scaffold. Aesthetic Plast Surg.2013;37(4):822-832.
[19] Zhou M,Liu Z,Liu C,et al.Tissue engineering of small-diameter vascular grafts by endothelial progenitor cells seeding heparin-coated decellularized scaffolds.J Biomed Mater Res B Appl Biomater. 2012; 100(1):111-120.
[20] Ravi S,Caves JM,Martinez AW,et al.Incorporation of fibronectin to enhance cytocompatibility in multilayer elastin-like protein scaffolds for tissue engineering.J Biomed Mater Res A.2013;101(7):1915-1925.
[21] Brougham CM,Levingstone TJ,Jockenhoevel S,et al.Incorporation of fibrin into a collagen- glycosaminoglycan matrix results in a scaffold with improved mechanical properties and enhanced capacity to resist cell-mediated contraction.Acta Biomater.2015;26:205-214.
[22] Aper T,Wilhelmi M,Gebhardt C,et al.Novel method for the generation of tissue-engineered vascular grafts based on a highly compacted fibrin matrix.Acta Biomater.2016;29:21-32.
[23] Bhardwaj N,Sow WT,Devi D,et al.Silk fibroin-keratin based 3D scaffolds as a dermal substitute for skin tissue engineering.Integr Biol (Camb).2015;7(1):53-63.
[24] Melke J,Midha S,Ghosh S,et al.Silk fibroin as biomaterial for bone tissue engineering.Acta Biomater. 2015.pii: S1742-7061(15)30098-2.
[25] Dunne LW,Iyyanki T,Hubenak J,et al.Characterization of dielectrophoresis-aligned nanofibrous silk fibroin–chitosan scaffold and its interactions with endothelial cells for tissue engineering applications. Acta Biomaterialia.2014;10(8):3630-3640.
[26] Marelli B,Alessandrino A,Fare S,et al.Compliant electrospun silk fibroin tubes for small vessel bypass grafting.Acta Biomater.2010;6(10):4019-4026.
[27] Puvaneswary S,Talebian S,Raghavendran HB,et al.Fabrication and in vitro biological activity of βTCP-Chitosan-Fucoidan composite for bone tissue engineering.Carbohyd Polym.2015;134:799-807.
[28] Han F,Dong Y,Su Z,et al.Preparation,characteristics and assessment of a novel gelatin–chitosan sponge scaffold as skin tissue engineering material.Int J Pharm.2014;476(1-2):124-133.
[29] Romanova OA,Grigor Ev TE,Goncharov ME,et al.Chitosan as a Modifying Component of Artificial Scaffold for Human Skin Tissue Engineering.Bull Exp Biol Med.2015;159(4):557-566.
[30] Yin A,Zhang K,Mcclure MJ,et al.Electrospinning collagen/chitosan/poly(L-lactic acid-co-epsilon- caprolactone) to form a vascular graft: mechanical and biological characterization.J Biomed Mater Res A. 2013;101(5):1292-1301.
[31] Du F,Wang H,Zhao W,et al.Gradient nanofibrous chitosan/poly ?-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering. Biomaterials.2012;33(3):762-770.
[32] Zhu C,Ma X,Xian L,et al.Characterization of a co-electrospun scaffold of HLC/CS/PLA for vascular tissue engineering.Biomed Mater Eng.2014;24(6): 1999-2005.
[33] Wu T,Huang C,Li D,et al.A multi-layered vascular scaffold with symmetrical structure by bi-directional gradient electrospinning.Colloid Surfaces B.2015; 133:179-188.
[34] Sankaran KK,Krishnan UM,Sethuraman S.Axially aligned 3D nanofibrous grafts of PLA-PCL for small diameter cardiovascular applications.J Biomater Sci Polym Ed.2014;25(16):1791-1812.
[35] Vatankhah E,Prabhakaran MP,Semnani D,et al. Electrospun tecophilic/gelatin nanofibers with potential for small diameter blood vessel tissue engineering. Biopolymers.2014;101(12):1165-1180.
[36] Wang W,Hu J,He C,et al.Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property.J Biomed Mater Res A. 2015;103(5):1784-1797. |
[1] | Zhang Tongtong, Wang Zhonghua, Wen Jie, Song Yuxin, Liu Lin. Application of three-dimensional printing model in surgical resection and reconstruction of cervical tumor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(9): 1335-1339. |
[2] | Zeng Yanhua, Hao Yanlei. In vitro culture and purification of Schwann cells: a systematic review [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1135-1141. |
[3] | Xu Dongzi, Zhang Ting, Ouyang Zhaolian. The global competitive situation of cardiac tissue engineering based on patent analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 807-812. |
[4] | Wu Zijian, Hu Zhaoduan, Xie Youqiong, Wang Feng, Li Jia, Li Bocun, Cai Guowei, Peng Rui. Three-dimensional printing technology and bone tissue engineering research: literature metrology and visual analysis of research hotspots [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 564-569. |
[5] | Chang Wenliao, Zhao Jie, Sun Xiaoliang, Wang Kun, Wu Guofeng, Zhou Jian, Li Shuxiang, Sun Han. Material selection, theoretical design and biomimetic function of artificial periosteum [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 600-606. |
[6] | Liu Fei, Cui Yutao, Liu He. Advantages and problems of local antibiotic delivery system in the treatment of osteomyelitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 614-620. |
[7] | Li Xiaozhuang, Duan Hao, Wang Weizhou, Tang Zhihong, Wang Yanghao, He Fei. Application of bone tissue engineering materials in the treatment of bone defect diseases in vivo [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 626-631. |
[8] | Zhang Zhenkun, Li Zhe, Li Ya, Wang Yingying, Wang Yaping, Zhou Xinkui, Ma Shanshan, Guan Fangxia. Application of alginate based hydrogels/dressings in wound healing: sustained, dynamic and sequential release [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 638-643. |
[9] | Chen Jiana, Qiu Yanling, Nie Minhai, Liu Xuqian. Tissue engineering scaffolds in repairing oral and maxillofacial soft tissue defects [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 644-650. |
[10] | Xing Hao, Zhang Yonghong, Wang Dong. Advantages and disadvantages of repairing large-segment bone defect [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 426-430. |
[11] | Chen Siqi, Xian Debin, Xu Rongsheng, Qin Zhongjie, Zhang Lei, Xia Delin. Effects of bone marrow mesenchymal stem cells and human umbilical vein endothelial cells combined with hydroxyapatite-tricalcium phosphate scaffolds on early angiogenesis in skull defect repair in rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3458-3465. |
[12] | Wang Hao, Chen Mingxue, Li Junkang, Luo Xujiang, Peng Liqing, Li Huo, Huang Bo, Tian Guangzhao, Liu Shuyun, Sui Xiang, Huang Jingxiang, Guo Quanyi, Lu Xiaobo. Decellularized porcine skin matrix for tissue-engineered meniscus scaffold [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3473-3478. |
[13] | Mo Jianling, He Shaoru, Feng Bowen, Jian Minqiao, Zhang Xiaohui, Liu Caisheng, Liang Yijing, Liu Yumei, Chen Liang, Zhou Haiyu, Liu Yanhui. Forming prevascularized cell sheets and the expression of angiogenesis-related factors [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3479-3486. |
[14] | Liu Chang, Li Datong, Liu Yuan, Kong Lingbo, Guo Rui, Yang Lixue, Hao Dingjun, He Baorong. Poor efficacy after vertebral augmentation surgery of acute symptomatic thoracolumbar osteoporotic compression fracture: relationship with bone cement, bone mineral density, and adjacent fractures [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3510-3516. |
[15] | Liu Liyong, Zhou Lei. Research and development status and development trend of hydrogel in tissue engineering based on patent information [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3527-3533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||