[1] Roosens A, Asadian M, De Geyter N, et al. Complete Static Repopulation of Decellularized Porcine Tissues for Heart Valve Engineering: An in vitro Study. Cells Tissues Organs. 2017;204(5-6):270-282.[2] Yao W, Lay YE, Kot A, et al. Improved Mobilization of Exogenous Mesenchymal Stem Cells to Bone for Fracture Healing and Sex Difference. Stem Cells. 2016;34(10): 2587-2600.[3] Zhang H, Kot A, Lay YE, et al. Acceleration of Fracture Healing by Overexpression of Basic Fibroblast Growth Factor in the Mesenchymal Stromal Cells. Stem Cells Transl Med. 2017;6(10):1880-1893.[4] 陆钰,王鑫,甘朝兵,等. 多孔纳米羟基磷灰石/壳聚糖支架材料复合成骨细胞的异位成骨研究[J].生物骨科材料与临床研究,2012, 9(1):21-25.[5] Yuan H, Qin J, Xie J, et al. Highly aligned core-shell structured nanofibers for promoting phenotypic expression of vSMCs for vascular regeneration. Nanoscale. 2016;8(36): 16307-16322.[6] Zhang CY, Zhang CL, Wang JF, et al. Fabrication and in vitro investigation of nanohydroxyapatite, chitosan, poly(L‐lactic acid) ternary biocomposite. Journal of Applied Polymer Science. 2014;127(3):2152-2159.[7] Bodle JC, Hanson AD, Loboa EG. Adipose-derived stem cells in functional bone tissue engineering: lessons from bone mechanobiology. Tissue Eng Part B Rev. 2011;17(3):195-211.[8] Sakaguchi Y, Sekiya I, Yagishita K, et al. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. 2005;52(8):2521-2529.[9] Feng W, Lv S, Cui J, et al. Histochemical examination of adipose derived stem cells combined with β-TCP for bone defects restoration under systemic administration of 1α,25(OH)2D3. Mater Sci Eng C Mater Biol Appl. 2015;54: 133-141.[10] Zhang H, Kot A, Lay YE, et al. Acceleration of Fracture Healing by Overexpression of Basic Fibroblast Growth Factor in the Mesenchymal Stromal Cells. Stem Cells Transl Med. 2017;6(10):1880-1893.[11] Vergroesen PP, Kroeze RJ, Helder MN, et al. The use of poly(L-lactide-co-caprolactone) as a scaffold for adipose stem cells in bone tissue engineering: application in a spinal fusion model. Macromol Biosci. 2011;11(6):722-730.[12] Roskies MG, Fang D, Abdallah MN, et al. Three-dimensionally printed polyetherketoneketone scaffolds with mesenchymal stem cells for the reconstruction of critical-sized mandibular defects. Laryngoscope. 2017;127(11):E392-E398.[13] Fang D, Roskies M, Abdallah MN, et al. Three-Dimensional Printed Scaffolds with Multipotent Mesenchymal Stromal Cells for Rabbit Mandibular Reconstruction and Engineering. Methods Mol Biol. 2017;1553:273-291.[14] Kang ML, Kim JE, Im GI. Vascular endothelial growth factor-transfected adipose-derived stromal cells enhance bone regeneration and neovascularization from bone marrow stromal cells. J Tissue Eng Regen Med. 2017;11(12): 3337-3348.[15] Godoy Zanicotti D, Coates DE, Duncan WJ. In vivo bone regeneration on titanium devices using serum-free grown adipose-derived stem cells, in a sheep femur model. Clin Oral Implants Res. 2017;28(1):64-75.[16] Lee SJ, Kim BJ, Kim YI, et al. Effect of Recombinant Human Bone Morphogenetic Protein-2 and Adipose Tissue-Derived Stem Cell on New Bone Formation in High-Speed Distraction Osteogenesis. Cleft Palate Craniofac J. 2016;53(1):84-92.[17] Tabatabaei Qomi R, Sheykhhasan M. Adipose-derived stromal cell in regenerative medicine: A review. World J Stem Cells. 2017;9(8):107-117.[18] Shakir M, Jolly R, Khan MS, et al. Nano-hydroxyapatite/ chitosan-starch nanocomposite as a novel bone construct: Synthesis and in vitro studies. Int J Biol Macromol. 2015;80: 282-292.[19] Godoy Zanicotti D, Coates DE, Duncan WJ. In vivo bone regeneration on titanium devices using serum-free grown adipose-derived stem cells, in a sheep femur model. Clin Oral Implants Res. 2017;28(1):64-75.[20] biocompatible evaluation of natural hydroxyapatite/chitosan composite for bone repair. J Appl Biomater Biomech. 2011; 9(1):11-18.[21] Park S, Heo HA, Lee KB, et al. Improved Bone Regeneration With Multiporous PLGA Scaffold and BMP-2-Transduced Human Adipose-Derived Stem Cells by Cell-Permeable Peptide. Implant Dent. 2017;26(1):4-11.[22] Zhang J, Zhou S, Zhou Y, et al. Adipose-Derived Mesenchymal Stem Cells (ADSCs) With the Potential to Ameliorate Platelet Recovery, Enhance Megakaryopoiesis, and Inhibit Apoptosis of Bone Marrow Cells in a Mouse Model of Radiation-Induced Thrombocytopenia. Cell Transplant. 2016;25(2):261-273.[23] Lai QG, Sun SL, Zhou XH, et al. Adipose-derived stem cells transfected with pEGFP-OSX enhance bone formation during distraction osteogenesis. J Zhejiang Univ Sci B. 2014;15(5): 482-490.[24] Zhang J, Zhou S, Zhou Y, et al. Adipose-Derived Mesenchymal Stem Cells (ADSCs) With the Potential to Ameliorate Platelet Recovery, Enhance Megakaryopoiesis, and Inhibit Apoptosis of Bone Marrow Cells in a Mouse Model of Radiation-Induced Thrombocytopenia. Cell Transplant. 2016;25(2):261-273.[25] Wan W, Zhang S, Ge L, et al. Layer-by-layer paper-stacking nanofibrous membranes to deliver adipose-derived stem cells for bone regeneration. Int J Nanomedicine. 2015;10: 1273-1290.[26] Zhang W, Zhang X, Wang S, et al. Comparison of the use of adipose tissue-derived and bone marrow-derived stem cells for rapid bone regeneration. J Dent Res. 2013;92(12): 1136-1141.[27] Lough DM, Chambers C, Germann G, et al. Regulation of ADSC Osteoinductive Potential Using Notch Pathway Inhibition and Gene Rescue: A Potential On/Off Switch for Clinical Applications in Bone Formation and Reconstructive Efforts. Plast Reconstr Surg. 2016;138(4):642e-652e.[28] 芮钢,胡宝山,郭元利,等.成骨细胞、血管内皮细胞复合组织工程骨修复骨缺损的实验研究[J]. 中华骨科杂志,2008, 28(2): 155-158.[29] Zhou X, Tao Y, Wang J, et al. Three-dimensional scaffold of type II collagen promote the differentiation of adipose-derived stem cells into a nucleus pulposus-like phenotype. J Biomed Mater Res A. 2016;104(7):1687-1693. |