中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (8): 2081-2090.doi: 10.12307/2026.070
• 生物材料综述 biomaterial review • 上一篇 下一篇
王 峥,程 吉,于金龙,刘文红,王召红,周鲁星
收稿日期:
2025-01-14
接受日期:
2025-04-27
出版日期:
2026-03-18
发布日期:
2025-07-28
通讯作者:
周鲁星,讲师,天津体育学院天津市运动生理与运动医学重点实验室,天津市 301617
作者简介:
王峥,男,1993年生,内蒙古自治区呼伦贝尔市人,蒙古族,理学硕士,实验师,主要从事运动康复、运动生物力学方面的研究。
基金资助:
Wang Zheng, Cheng Ji, Yu Jinlong, Liu Wenhong, Wang Zhaohong, Zhou Luxing
Received:
2025-01-14
Accepted:
2025-04-27
Online:
2026-03-18
Published:
2025-07-28
Contact:
Zhou Luxing, Lecturer, Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 301617, China
About author:
Wang Zheng, MS, Experimentalist, Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 301617, China
Supported by:
摘要:
文题释义:
水凝胶:是一种由亲水性高分子构成的三维网络结构,能够吸收并保持大量水分,同时保持固态形态。水凝胶可以通过物理或化学交联形成,常见的组成材料包括透明质酸、明胶、海藻酸盐、聚乙烯醇等。
脑卒中:是一种由于脑部血液供应受阻或出血导致脑组织损伤的急性脑血管疾病,主要分为缺血性脑卒中(由血栓或栓塞引起)和出血性脑卒中(由血管破裂引起)。
背景:近年来,水凝胶因独特的生物相容性、可塑性和多功能性成为脑卒中治疗中备受关注的材料。
目的:阐述脑卒中(出血性、缺血性)的主要病理机制、水凝胶治疗脑卒中的优势和应用进展以及水凝胶在设计和应用方面的独特考虑和挑战。
方法:应用计算机检索PubMed数据库、中国知网中的相关文献,英文检索词为“Hydrogel,Haemorrhagic stroke,Ischaemic stroke,Drug transport,Neuronal regeneration,Vascular remodelling, Inflammatory modulation”,中文检索词为“水凝胶,出血性脑卒中,缺血性脑卒中,药物运输,神经元再生,血管重塑,炎症调控”。根据入选标准,最终纳入符合要求的100篇文献进行综述。
结果与结论:水凝胶在脑卒中治疗中展现了显著优势,包括模拟细胞外基质促进神经修复、负载药物和生长因子实现精准释放、调控炎症反应以及支持血管新生等。同时,水凝胶的可塑性和微创输送特点提高了治疗的靶向性和患者的接受度,然而,目前仍面临材料稳定性、降解控制及临床转化的技术瓶颈。未来研究应聚焦于开发智能化、复合型和高效能水凝胶,以实现个性化、精准化治疗。水凝胶材料的持续发展有望为脑卒中等神经系统疾病提供更有效的解决方案,推动这一领域的医疗技术革新。
https://orcid.org/0009-0004-6759-0364(王峥)
中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程
中图分类号:
王 峥, 程 吉, 于金龙, 刘文红, 王召红, 周鲁星. 水凝胶材料在脑卒中治疗中的应用进展与未来展望[J]. 中国组织工程研究, 2026, 30(8): 2081-2090.
Wang Zheng, Cheng Ji, Yu Jinlong, Liu Wenhong, Wang Zhaohong, Zhou Luxing. Progress and future perspectives on the application of hydrogel materials in stroke therapy[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(8): 2081-2090.
[1] 张楠,孟庆华,鲍春雨,等.脑卒中患者运动过程中动力学特征的智能预测[J].医用生物力学,2024,39(3):489-496. [2] 周鲁星,孟庆华,刘文红,等.偏瘫患者下台阶过程下肢生物力学特征分析[J].医用生物力学,2024,39(1):125-131. [3] 周鲁星,孟庆华,刘文红,等.偏瘫患者以不同步态模式通过障碍物的生物力学特征对比分析[J].医用生物力学,2022, 37(5):805-811. [4] 符荷琯,沈栩轩,徐佳丽,等.青年烟雾病患者的卒中类型及危险因素分析[J].中国卒中杂志,2022,17(9):937-943. [5] RUST R, NIH LR, LIBERALE L. Brain repair mechanisms after cell therapy for stroke. Brain. 2024;147(10):3286-3305. [6] MIAO ZW, WANG Z, ZHENG SL, et al. Anti-stroke biologics: from recombinant proteins to stem cells and organoids. Stroke Vasc Neurol. 2024;9(5):467-480. [7] PERERA KS, SHARMA MA, EIKELBOOM JW, et al. Combination Antithrombotic Therapy for Reduction of Recurrent Ischemic Stroke in Intracranial Atherosclerotic Disease. Stroke. 2025; 56(2):380-389. [8] MCCABE JJ, WALSH C, GOREY S, et al. Interleukin-6, C-Reactive Protein, and Recurrence After Stroke: A Time-Course Analysis of Individual-Participant Data. Stroke. 2024;55(12):2825-2834. [9] SAFOURIS A, MAGOUFIS G, TSIVGOULIS G, et al. Emerging agents for the treatment and prevention of stroke: progress in clinical trials. Expert Opin Investig Drugs. 2021;30(10):1025-1035. [10] WANG Y, WANG Z, GUO W, et al. An injectable extracellular matrix-mimicking conductive hydrogel for sequential treatment of ischemic stroke. Chem Eng J. 2024;502:158039. [11] JIANG S, GENG R, WANG R, et al. The potential of hydrogels as a niche for promoting neurogenesis and regulating neuroinflammation in ischemic stroke. Mater Design. 2023;229:111916. [12] SHI T, LU H, ZHU J, et al. Naturally derived dual dynamic crosslinked multifunctional hydrogel for diabetic wound healing. Compos Part B-Eng. 2023;257:110687. [13] LEE JS, KIM HS, NAH H, et al. Bioinspired semi-flexible hydrogel with anti-inflammatory potential for natural tissue-mimicking bone regeneration. Compos Part B Eng. 2024;273:111223. [14] LIU Y, ZHANG W, HU C, et al. A composite hydrogel improves the survival and differentiation of human iPSC-derived neural stem cells after ischemic stroke. Compos Part B Eng. 2023;259: 110711. [15] WANG Y, LI G, YANG L, et al. Development of innovative biomaterials and devices for the treatment of cardiovascular diseases. Adv Mater. 2022;34(46):2201971. [16] WANG Z, HU C, ZHANG W, et al. An injectable ECM-like hydrogel with bioactive peptides and RepSox nanoparticles for myocardial infarction treatment. Chem Eng J. 2023;474:145878. [17] OVERMAN JJ, CLARKSON AN, WANNER IB, et al. A role for ephrin-A5 in axonal sprouting,recovery, and activity-dependent plasticity after stroke. Proc Natl Acad Sci U S A. 2012;109(33):E2230-2239. [18] SHI Y, ZHOU M, ZHAO S, et al. Janus amphiphilic nanofiber membranes synergistically drive antibacterial and anti-inflammatory strategies for skin wound healing. Mater Design. 2023;227:111778. [19] SHAZEEB MS, CORAZZINI R, KONOWICZ PA, et al. Assessment of in vivo degradation profiles of hyaluronic acid hydrogels using temporal evolution of chemical exchange saturation transfer (CEST) MRI. Biomaterials. 2018;178:326-338. [20] LI C, WANG JT, LIU K, et al. Antibacterial and anti-inflammatory synergistic effects of double-layer hydrogel promoting bacterial wound healing. Chem Eng J. 2024;493:152513. [21] DUAN H, LI S, HAO P, et al. Activation of endogenous neurogenesis and angiogenesis by basic fibroblast growth factor-chitosan gel in an adult rat model of ischemic stroke. Neural Regen Res. 2024;19(2):409-415. [22] ZHENG W, YAO SY, HU H, et al. Hypoxia-responsive calixarene-grafted self-assembled peptide hydrogel for inflammation suppression in ischemic stroke. Nano Today. 2024;54:102064. [23] O’CONNOR SM, ANDREADIS JD, SHAFFER KM, et al. Immobilization of neural cells in three-dimensional matrices for biosensor applications. Biosens Bioelectron. 2000; 14(10-11):871-881. [24] TIAN WM, ZHANG CL, HOU SP, et al. Hyaluronic acid hydrogel as Nogo-66 receptor antibody delivery system for the repairing of injured rat brain: in vitro. J Control Release. 2005;102(1):13-22. [25] EMERICH DF, SILVA E, ALI O, et al. Injectable VEGF hydrogels produce near complete neurological and anatomical protection following cerebral ischemia in rats. Cell Transplant. 2010;19(9):1063-1071. [26] ZHANG Y, GAO C, LI X, et al. Thermosensitive methyl cellulose-based injectable hydrogels for post-operation anti-adhesion. Carbohydr Polym. 2014;101:171-178. [27] ZHANG S, ERMANN J, SUCCI MD, et al. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. Sci Transl Med. 2015;7(300): 300ra128. [28] GORENKOVA N, OSAMA I, SEIB FP, et al. In Vivo Evaluation of Engineered Self-Assembling Silk Fibroin Hydrogels after Intracerebral Injection in a Rat Stroke Model. ACS Biomater Sci Eng. 2019;5(2):859-869. [29] BATES NM, HEIDENREICH HE, FALLON ME, et al. Bioconjugation of a Collagen-Mimicking Peptide Onto Poly(vinyl alcohol) Encourages Endothelialization While Minimizing Thrombosis. Front Bioeng Biotechnol. 2020;8:621768. [30] LIU H, FENG Y, CHE S, et al. An Electroconductive Hydrogel Scaffold with Injectability and Biodegradability to Manipulate Neural Stem Cells for Enhancing Spinal Cord Injury Repair. Biomacromolecules. 2023;24(1):86-97. [31] JIANG S. The potential of hydrogels as a niche for promoting neurogenesis and regulating neuroinflammation in ischemic stroke. Mater Design. 2023;229:111916. [32] WARDLAW JM, William M. Feinberg Award for Excellence in Clinical Stroke: Small Vessel Disease; a Big Problem, But Fixable. Stroke. 2018;49(7):1770-1775. [33] FASTNER C, LESCH H, KRUSKA M, et al. Cardiac troponin elevation in intracerebral hemorrhage patients may rather reflect acute myocardial damage than acute myocardial infarction. Eur Heart J. 2024;45(Supplement_1):Supplement_1.doi:10.1093/eurheartj/ehae666.3019. [34] IZQUIERDO JM. Blood platelet factor 4: the elixir of brain rejuvenation. Mol Neurodegener. 2024;19(1):3. [35] 刘艺,肖凌勇,王璨,等.针刺介入时机对急性缺血性脑卒中患者肢体运动功能障碍的影响[J].中医杂志,2024, 65(19):2002-2009. [36] 曹克勇,王颍,黄昭鸣,等.语言认知评估训练与沟通仪治疗脑卒中患者复述障碍[J].听力学及言语疾病杂志,2021, 29(4):411-414. [37] 张梦妍,田苗苗,姚金玉,等.基于疾病特征的内养功训练对脑卒中患者焦虑抑郁及认知功能的影响[J].护理学杂志, 2024,39(23):44-47. [38] 仲思潼,曹馨元,梁吉,等.功能磁共振成像技术诠释针刺治疗缺血性中风机制的进展[J].磁共振成像,2024,15(11): 174-179. [39] 王雪,王立平,宋宁,等.脑卒中后眼球运动障碍行为视觉训练的效果[J].中国康复理论与实践,2024,30(6):726-730. [40] WEILINGER N, MASLIEIEVA V, BIALECKI J, et al. Ionotropic receptors and ion channels in ischemic neuronal death and dysfunction. Acta Pharmacol Sin. 2013;34:39-48. [41] MAYOR D, TYMIANSKI M. Neurotransmitters in the mediation of cerebral ischemic injury. Neuropharmacology. 2018;134:178-188. [42] BOCK FJ, TAIT SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21:85-100. [43] SHAKERI R, KHEIROLLAHI A, DAVOODI J. Apaf-1: Regulation and function in cell death. Biochimie. 2017;135:111-125. [44] LOU Y, MA M, JIANG Y, et al. Ferroptosis: A new strategy for traditional Chinese medicine treatment of stroke. Biomed Pharmacother. 2022;156:113806. [45] CHAI Z, ZHENG J, SHEN J. Mechanism of ferroptosis regulating ischemic stroke and pharmacologically inhibiting ferroptosis in treatment of ischemic stroke. CNS Neurosci Ther. 2024;30(7):e14865. [46] CHAN PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 2001; 21(1):2-14. [47] JI C, YU X, XU W, et al. The role of glymphatic system in the cerebral edema formation after ischemic stroke. Exp Neurol. 2021;340:113685. [48] ZHOU X, LI Y, LENAHAN C, et al. Glymphatic System in the Central Nervous System, a Novel Therapeutic Direction Against Brain Edema After Stroke. Front Aging Neurosci. 2021;13:698036. [49] 张宇,任倩玉,姜文慧,等.老年缺血性脑卒中伴脑微出血患者脂代谢特征及调脂药物应用特点与预后的相关性[J].中国老年学杂志,2025,45(1):20-24. [50] LI Z, HAN H, MA L, et al. Registry of Multimodality Treatment for Brain Arteriovenous Malformation in Mainland China (MATCH). Venous aneurysms in unruptured supratentorial brain arteriovenous malformations: a protective factor against hemorrhagic stroke and insights into hemodynamic mechanisms. Eur Radiol. 2025;35(5):2660-2669. [51] SLOANE KL, GOTTESMAN RF, JOHANSEN MC, et al. Stroke Subtype and Risk of Subsequent Hospitalization: The Atherosclerosis Risk in Communities Study. Neurology. 2024;102(3):e208035. [52] CHEN CH, SHOAMANESH A, COLORADO P, et al. Hemorrhagic Transformation in Noncardioembolic Acute Ischemic Stroke: MRI Analysis From PACIFIC-STROKE. Stroke. 2024;55(6):1477-1488. [53] EDWARDSON MA, MITSUHASHI M, VAN EPPS D. Elevation of astrocyte-derived extracellular vesicles over the first month post-stroke in humans. Sci Rep. 2024; 14(1):5272. [54] CHENG Y, VALDÉS HERNÁNDEZ MDC, XU M, et al. Differential risk factor profile and neuroimaging markers of small vessel disease between lacunar ischemic stroke and deep intracerebral hemorrhage. Ther Adv Neurol Disord. 2024;17:17562864241253901. [55] DONOFRIO CA, ARNAUTOVIC K, RICCIO L, et al. Neurological and functional outcomes of 32 patients with hemorrhagic brainstem cavernous malformations: a practical guide for surgical planning. J Neurosurg. 2025;142(5):1465-1475. [56] RIMMER J, LUND VJ. Hereditary haemorrhagic telangiectasia. Rhinology. 2015;53(3):195-203. [57] AGUILAR BJ. All-cause mortality among veterans with mild cognitive impairment and Alzheimer’s dementia who have Intracerebral hemorrhage and subarachnoid hemorrhage. Alzheimer Dementia. 2024; 20(S4):e089735. [58] SANJANWALA D, LONDHE V, TRIVEDI R, et al. Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opin Drug Deliv. 2022; 19(12):1664-1695. [59] WU Y, WANG J, SHI Y, et al. Implantation of Brain-Derived Extracellular Matrix Enhances Neurological Recovery after Traumatic Brain Injury. Cell Transplant. 2017;26(7): 1224-1234. [60] SAHA K, KEUNG AJ, IRWIN EF, et al. Substrate Modulus Directs Neural Stem Cell Behavior. Biophys J. 2008;95(9):4426-4438. [61] ENGLER AJ, SEN S, SWEENEY HL, et al. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell. 2006;126(4):677-689. [62] CHAN SJ, LOVE C, SPECTOR M, et al. Endogenous regeneration: Engineering growth factors for stroke. Neurochem Int. 2017;107:57-65. [63] CORREA S, GROSSKOPF AK, LOPEZ HERNANDEZ H, et al. Translational Applications of Hydrogels. Chem Rev. 2021;121(18):11385-11457. [64] CAI L, HEILSHORN SC. Designing ECM-mimetic materials using protein engineering. Acta Biomater. 2014;10(4): 1751-1760. [65] FU L, SUFLITA M, LINHARDT RJ. Bioengineered heparins and heparan sulfates. Adv Drug Deliv Rev. 2016;97: 237-249. [66] NILASAROYA A, KOP AM, MORRISON DA. Heparin-functionalized hydrogels as growth factor-signaling substrates. J Biomed Mater Res A. 2021;109(3):374-384. [67] YIN S, CAO Y. Hydrogels for Large-Scale Expansion of Stem Cells. Acta Biomater. 2021;128: 1-20. [68] VERNEREY FJ, LALITHA SRIDHAR S, MURALIDHARAN A,et al. Mechanics of 3D Cell-Hydrogel Interactions: Experiments, Models, and Mechanisms. Chem Rev. 2021; 121(18):11085-11148. [69] LI J, TIAN Q, SUN H, et al. A novel, liposome-loaded, injectable hydrogel for enhanced treatment of choroidal neovascularization by sub-tenon’s injection. Mater Today Nano. 2022;20:100264. [70] LIU C, ZHANG Q, ZHU S, et al. Preparation and applications of peptide-based injectable hydrogels. RSC Adv. 2019;9(48):28299-28311. [71] JIN T, NICHOLLS FJ, CRUM WR, et al. Diamagnetic chemical exchange saturation transfer (diaCEST) affords magnetic resonance imaging of extracellular matrix hydrogel implantation in a rat model of stroke. Biomaterials. 2017;113:176-190. [72] GHUMAN H, GERWIG M, NICHOLLS FJ, et al. Long-term retention of ECM hydrogel after implantation into a sub-acute stroke cavity reduces lesion volume. Acta Biomater. 2017;63:50-63. [73] BUDRIENĖ S, KOCHANĖ T, ŽURAUSKAITĖ N, et al. Synthesis and characterization of UV curable biocompatible hydrophilic copolymers containing siloxane units. J Biomater Sci Polym Ed. 2023;34(11): 1539-1558. [74] GU C, LI Y, LIU J, et al. Neural stem cell-derived exosomes-loaded adhesive hydrogel controlled-release promotes cerebral angiogenesis and neurological function in ischemic stroke. Exp Neurol. 2023;370:114547. [75] POWERS WJ, RABINSTEIN AA, ACKERSON T. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2019; 50(12):e344-e418. [76] ALLAN SM, ROTHWELL NJ. Cytokines and acute neurodegeneration. Nat Rev Neurosci. 2001;2(10):734-744. [77] BARTLETT RD, ELEFTHERIADOU D, EVANS R. Mechanical properties of the spinal cord and brain: Comparison with clinical-grade biomaterials for tissue engineering and regenerative medicine. Biomaterials. 2020;258:120303. [78] BOESE AC, LE QE, PHAM D, et al. Neural stem cell therapy for subacute and chronic ischemic stroke. Stem Cell Res Ther. 2018; 9(1):154. [79] CONTRERAS E, BOLÍVAR S, NAVARRO X, et al. New insights into peripheral nerve regeneration: The role of secretomes. Exp Neurol. 2022;354:114069. [80] ZHANG Y, ZHANG M, ZHANG R, et al. Conductive GelMA/PEDOT: PSS Hybrid Hydrogel as a Neural Stem Cell Niche for Treating Cerebral Ischemia-Reperfusion Injury. Front Mater. 2022;9:914994. [81] JIAN WH, WANG HC, KUAN CH, et al. Glycosaminoglycan-based hybrid hydrogel encapsulated with polyelectrolyte complex nanoparticles for endogenous stem cell regulation in central nervous system regeneration. Biomaterials. 2018;174: 17-30. [82] WANG J, LI X, SONG Y, et al. Injectable silk sericin scaffolds with programmable shape-memory property and neuro-differentiation-promoting activity for individualized brain repair of severe ischemic stroke. Bioact Mater. 2021;6(7):1988-1999. [83] FU K, WU H, SU Z. Self-assembling peptide-based hydrogels: Fabrication, properties, and applications. Biotechnol Adv. 2021; 49:107752. [84] FARRUKH A, ORTEGA F, FAN W, et al. Bifunctional Hydrogels Containing the Laminin Motif IKVAV Promote Neurogenesis. Stem Cell Reports. 2017;9(5):1432-1440. [85] CARMICHAEL ST. Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol. 2006;59(5): 735-742. [86] GUO F, LI J, CHEN Z, et al. An Injectable Black Phosphorus Hydrogel for Rapid Tooth Extraction Socket Healing. ACS Appl Mater Interfaces. 2024;16(20): 25799-25812. [87] CHEN J, LUO J, FENG J, et al. Spatiotemporal controlled released hydrogels for multi-system regulated bone regeneration. J Control Release. 2024;372:846-861. [88] OGLE ME, KRIEGER JR, TELLIER LE, et al. Dual Affinity Heparin-Based Hydrogels Achieve Pro-Regenerative Immunomodulation and Microvascular Remodeling. ACS Biomater Sci Eng. 2018;4(4):1241-1250. [89] GAO G, PARK JY, KIM BS, et al. Coaxial Cell Printing of Freestanding, Perfusable, and Functional In Vitro Vascular Models for Recapitulation of Native Vascular Endothelium Pathophysiology. Adv Healthc Mater. 2018;7(23):e1801102. [90] NIH LR, GOJGINI S, CARMICHAEL ST, et al. Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke. Nature Mater. 2018;17: 642-651. [91] MCCRARY MR, JESSON K, WEI ZZ, et al. Cortical Transplantation of Brain-Mimetic Glycosaminoglycan Scaffolds and Neural Progenitor Cells Promotes Vascular Regeneration and Functional Recovery after Ischemic Stroke in Mice. Adv Healthc Mater. 2020;9(5):e1900285. [92] ZHENG W, YAO SY, HU H, et al. Hypoxia-responsive calixarene-grafted self-assembled peptide hydrogel for inflammation suppression in ischemic stroke. Nano Today. 2024;54:102064. [93] LIU Y, ZHANG F, LONG L. Dual-function hydrogels with sequential release of GSK3β inhibitor and VEGF inhibit inflammation and promote angiogenesis after stroke. Chem Eng J. 2022;433: 133671. [94] ANG H, HUANG W, MA J, et al. SWOT analysis and revelation in traditional Chinese medicine internationalization. Chin Med. 2018;13:5. [95] BECKER ML, BURDICK JA. Introduction: Polymeric Biomaterials. Chem Rev. 2021; 121(18):10789-10791. [96] POURAZARIYAN A, SHAHGHOLI M, KARIMIPOUR A. The effect of initial temperature and ZnO nanoparticle volume fractions on the stability of sodium alginate hydrogel nanocomposite using molecular dynamics simulation. Int Commun Heat Mass Transfer. 2025; 162:108641. [97] LIU RR, MAO LB, YU SH. Strong and tough chitin hydrogel constructed by dehydration and rehydration strategy. Nano Res. 2024; 17(9):8192-8199. [98] BORDINI EAF, FERREIRA JA, DUBEY N, et al. Injectable Multifunctional Drug Delivery System for Hard Tissue Regeneration under Inflammatory Microenvironments. ACS Appl Bio Mater. 2021;4(9):6993-7006. [99] CHEN M, WANG Y, ZHANG J, et al. Stimuli-responsive DNA-based hydrogels for biosensing applications. J Nanobiotechnology. 2022;20(1):40. [100] LIU J, WANG K, LUAN J, et al. Visualization of in situ hydrogels by MRI in vivo. J Mater Chem B. 2016;4(7): 1343-1353. |
[1] | 刘 洋, 刘东辉, 徐 磊, 展 旭, 孙昊博, 康 凯. 刺激响应型可注射水凝胶在心肌梗死精准化治疗中的作用与趋势[J]. 中国组织工程研究, 2026, 30(8): 2072-2080. |
[2] | 郭宇超, 倪前伟, 尹 晨, 吉格尔·赛义力汗, 高 瞻. 季铵化壳聚糖紧急止血材料:合成、机制与应用[J]. 中国组织工程研究, 2026, 30(8): 2091-2100. |
[3] | 刘宏杰, 牟秋菊, 申玉雪, 梁 飞, 祝丽丽. 金属有机框架/羧甲基壳聚糖-氧化海藻酸钠/富血小板血浆水凝胶促糖尿病感染创面愈合[J]. 中国组织工程研究, 2026, 30(8): 1929-1939. |
[4] | 张 茜, 王福霞, 王 文, 张 坤. 纳米水凝胶复合系统特性分析及在可视化影像诊疗中的应用策略[J]. 中国组织工程研究, 2026, 30(2): 480-488. |
[5] | 黄新旭, 张 鑫, 王 剑. 活性微生态水凝胶促进皮肤创面的愈合[J]. 中国组织工程研究, 2026, 30(2): 489-498. |
[6] | 刘晓红, 赵 天, 穆云萍, 冯文金, 吕存声, 张智永, 赵子建, 李芳红. 脱细胞真皮基质水凝胶促进大鼠皮肤创面的愈合[J]. 中国组织工程研究, 2026, 30(2): 395-403. |
[7] | 王 域, 范民杰, 郑朋飞. 多重刺激响应性水凝胶在骨损伤修复中的应用:特殊响应能力及多样性功能[J]. 中国组织工程研究, 2026, 30(2): 469-479. |
该研究系统综述了水凝胶在脑卒中治疗中的最新进展,重点探讨其在神经元再生、血管重塑和炎症调控方面的应用。水凝胶因良好的生物相容性、可注射性及适应性,能够作为神经修复的理想支架,为干细胞、药物和生长因子提供精准递送平台。该文深入分析了水凝胶的关键材料特性,包括生物降解性、弹性、孔径调控及其对脑组织微环境的适应性,强调其在促进神经细胞存活、调控免疫反应和支持组织修复方面的优势。此外,该文总结了工程化水凝胶的创新递送策略,如智能响应型水凝胶、纳米杂化水凝胶及DNA水凝胶,并探讨了其在精准药物释放和局部微环境调控中的潜力。与此同时,该文也分析了水凝胶在临床转化中的挑战,包括材料稳定性、降解控制、免疫相容性及大规模生产问题,并展望了未来发展趋势。研究指出,结合生物工程和纳米技术开发智能化、多功能水凝胶,将有助于提升脑卒中治疗的精准化和个性化水平,为神经系统疾病的治疗提供更有效的策略。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||