[1] RODA G, CHIEN NG S, KOTZE PG, et al. Crohn’s disease. Nat Rev Dis Primers. 2020;6(1):22.
[2] LAMB CA, KENNEDY NA, RAINE T, et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults . Gut. 2019;68(Suppl 3):s1-s106.
[3] HANAUER SB, FEAGAN BG, LICHTENSTEIN GR, et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet. 2002;359(9317):1541-1519.
[4] SCHNITZLER F, FIDDER H, FERRANTE M, et al. Long-term outcome of treatment with infliximab in 614 patients with Crohn’s disease: results from a single-centre cohort. Gut. 2009;58(4):492-500.
[5] FERNANDES P, SHARMA Y, ZULQARNAIN F, et al. Identifying metabolic shifts in Crohn’s disease using’ omics-driven contextualized computational metabolic network models. Sci Rep. 2023;13(1): 203.
[6] DI CIAULA A, BONFRATE L, KHALIL M, et al. The interaction of bile acids and gut inflammation influences the pathogenesis of inflammatory bowel disease. Intern Emerg Med. 2023;18(8): 2181-2197.
[7] LLOYD-PRICE J, ARZE C, ANANTHAKRISHNAN AN, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019; 569(7758):655-662.
[8] VICH VILA A, ZHANG J, LIU M, et al. Untargeted faecal metabolomics for the discovery of biomarkers and treatment targets for inflammatory bowel diseases. Gut. 2024;73(11): 1909-1920.
[9] LAVELLE A, SOKOL H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17(4):223-237.
[10] BIAGIOLI M, MARCHIANO S, CARINO A, et al. Bile Acids Activated Receptors in Inflammatory Bowel Disease. Cells. 2021;10(6):1281.
[11] JIN W, ZHENG M, CHEN Y, et al. Update on the development of TGR5 agonists for human diseases. Eur J Med Chem. 2024;271:116462.
[12] SHIN DJ, WANG L. Bile Acid-Activated Receptors: A Review on FXR and Other Nuclear Receptors. Handb Exp Pharmacol. 2019;256:51-72.
[13] MA Y, YANG H, WANG X, et al. Bile acids as signaling molecules in inflammatory bowel disease: Implications for treatment strategies. J Ethnopharmacol. 2025;337(Pt 3):118968.
[14] NGOLLO M, PEREZ K, HAMMOUDI N, et al. Identification of Gene Expression Profiles Associated with an Increased Risk of Post-Operative Recurrence in Crohn’s Disease. J Crohns Colitis. 2022;16(8):1269-1280.
[15] RITCHIE ME, PHIPSON B, WU D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.
[16] BARDOU P, MARIETTE J, ESCUDIÉ F, et al. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 2014;15(1):293.
[17] YU G, WANG L G, HAN Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284-287.
[18] LUO W, BROUWER C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics (Oxford, England). 2013;29(14):1830-1831.
[19] LANGFELDER P, HORVATH S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics. 2008;9:559.
[20] LANGFELDER P, HORVATH S. Fast R Functions for Robust Correlations and Hierarchical Clustering. J Stat Softw. 2012;46(11):i11.
[21] SZKLARCZYK D, GABLE AL, LYON D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607-D613.
[22] BUTLER A, HOFFMAN P, SMIBERT P, et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411-420.
[23] LALL S, SINHA D, BANDYOPADHYAY S, et al. Structure-Aware Principal Component Analysis for Single-Cell RNA-seq Data. J Comput Biol. 2018; 25(12):1365-1373.
[24] PONT F, TOSOLINI M, FOURNIÉ JJ. Single-Cell Signature Explorer for comprehensive visualization of single cell signatures across scRNA-seq datasets. Nucleic Acids Res. 2019;47(21):e133.
[25] QUAN F, LIANG X, CHENG M, et al. Annotation of cell types (ACT): a convenient web server for cell type annotation. Genome Med. 2023;15(1):91.
[26] SUN J, DING J, YUE H, et al. Hypoxia-induced BNIP3 facilitates the progression and metastasis of uveal melanoma by driving metabolic reprogramming. Autophagy. 2024:1-19.doi: 10.1080/15548627.2024.2395142.
[27] ARAN D, HU Z, BUTTE AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18(1):220.
[28] TSUJI Y, HUANG Y, PENG J, et al. Identification of key ferroptosis genes in diabetic retinopathy based on bioinformatics analysis. PLoS One. 2023; 18(1):e0280548.
[29] APARICIO-PUERTA E, HIRSCH P, SCHMARTZ GP, et al. miEAA 2023: updates, new functional microRNA sets and improved enrichment visualizations. Nucleic Acids Res. 2023;51(W1):W319-W325.
[30] DOSEDELOVA V, ITTERHEIMOVA P, KUBAN P. Analysis of bile acids in human biological samples by microcolumn separation techniques: A review. Electrophoresis. 2021;42(1-2):68-85.
[31] 胡静怡,沈洪,朱磊,等.胆汁酸在炎症性肠病中作用的研究进展[J].东南大学学报(医学版), 2021,40(1):108-113.
[32] DING NS, MCDONALD JAK, PERDONES-MONTERO A, et al. Metabonomics and the Gut Microbiome Associated With Primary Response to Anti-TNF Therapy in Crohn’s Disease. J Crohns Colitis. 2020; 14(8):1090-1102.
[33] GOTOH-SAITO S, ABE T, FURUKAWA Y, et al. Characterization of human UGT2A3 expression using a prepared specific antibody against UGT2A3. Drug Metab Pharmacokinet. 2019;34(4): 280-286.
[34] HU DG, MARRI S, MACKENZIE PI, et al. The Expression Profiles and Deregulation of UDP-Glycosyltransferase (UGT) Genes in Human Cancers and Their Association with Clinical Outcomes. Cancers (Basel). 2021;13(17):4491.
[35] YANG X, LI P, ZHUANG J, et al. Identification of Molecular Targets of Bile Acids Acting on Colorectal Cancer and Their Correlation with Immunity. Dig Dis Sci. 2024;69(1):123-134.
[36] 李宏峰,赵俊芳,陈雪雯,等.UGT2A3差异表达在结直肠癌发生和早期诊断中的作用机制[J].国际生物医学工程杂志,2021,44(3):184-191.
[37] 高源.UGT2A3调控结肠癌增殖及迁移的作用及其机制研究[D].广州:南方医科大学,2020.
[38] PANG B, XU X, LU Y, et al. Prediction of new targets and mechanisms for quercetin in the treatment of pancreatic cancer, colon cancer, and rectal cancer . Food Funct. 2019;10(9): 5339-5349.
[39] SALIMY S, LANJANIAN H, ABBASI K, et al. A deep learning-based framework for predicting survival-associated groups in colon cancer by integrating multi-omics and clinical data. Heliyon. 2023;9(7):e17653.
[40] ZHAO Q, WANG N, LI Y, et al. [Lnc-TMEM132D-AS1 overexpression reduces sensitivity of non-small cell lung cancer cells to osimertinib]. Nan Fang Yi Ke Da Xue Xue Bao. 2023;43(2):242-250.
[41] GRAVINA AG, PELLEGRINO R, DURANTE T, et al. The Melanocortin System in Inflammatory Bowel Diseases: Insights into Its Mechanisms and Therapeutic Potentials. Cells. 2023;12(14):1889.
[42] DEBAN L, CORREALE C, VETRANO S, et al. Multiple pathogenic roles of microvasculature in inflammatory bowel disease: a Jack of all trades. Am J Pathol. 2008;172(6):1457-1466.
[43] ELAHIMANESH M, NAJAFI M. Cross talk between bacterial and human gene networks enriched using ncRNAs in IBD disease. Sci Rep. 2023;13(1):7704.
[44] LIU R, TANG A, WANG X, et al. Inhibition of lncRNA NEAT1 suppresses the inflammatory response in IBD by modulating the intestinal epithelial barrier and by exosome-mediated polarization of macrophages. Int J Mol Med. 2018;42(5):2903-2913.
[45] SNEITZ N, COURT MH, ZHANG X, et al. Human UDP-glucuronosyltransferase UGT2A2: cDNA construction, expression, and functional characterization in comparison with UGT2A1 and UGT2A3. Pharmacogenet Genomics. 2009; 19(12):923-934.
[46] 余水岸,李跃.粪便胆汁酸与慢性回肠末端炎症程度呈正相关:一项前瞻性队列研究[J].现代消化及介入诊疗,2023,28(10):1214-1217.
[47] DUBOC H, RAJCA S, RAINTEAU D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut. 2013;62(4):531-539.
[48] PAN Y, ZHANG H, LI M, et al. Novel approaches in IBD therapy: targeting the gut microbiota-bile acid axis. Gut Microbes. 2024;16(1):2356284.
[49] FIORUCCI S, CARINO A, BALDONI M, et al. Bile Acid Signaling in Inflammatory Bowel Diseases. Dig Dis Sci. 2021;66(3):674-693.
[50] ZHOU X, CAO L, JIANG C, et al. PPARα-UGT axis activation represses intestinal FXR-FGF15 feedback signalling and exacerbates experimental colitis. Nature Commun. 2014;5(1):4573.
[51] MEECH R, HU DG, MCKINNON RA, et al. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol Rev. 2019;99(2):1153-1222. |