中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (18): 3915-3924.doi: 10.12307/2025.675
• 组织构建综述 tissue construction review • 上一篇 下一篇
张松江,李龙洋,周春光
收稿日期:
2024-07-17
接受日期:
2024-09-05
出版日期:
2025-06-28
发布日期:
2024-11-29
作者简介:
张松江,女,1966年生,河南省郑州市人,汉族,教授,生理学博士,硕士生导师,主要从事老年神经退行性疾病方面的研究。
基金资助:
Zhang Songjiang, Li Longyang, Zhou Chunguang
Received:
2024-07-17
Accepted:
2024-09-05
Online:
2025-06-28
Published:
2024-11-29
About author:
Zhang Songjiang, PhD, Professor, Master’s supervisor, Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
Supported by:
摘要:
文题释义:
α7烟碱型乙酰胆碱受体:是由5个α7亚基构成的乙酰胆碱门控离子通道,既是乙酰胆碱受体又是离子通道,广泛分布于神经和肌肉。α7烟碱型乙酰胆碱受体在脑内主要存在于海马体和前额叶皮质神经元和胶质细胞膜,对认知和学习记忆功能有重要作用。
α7烟碱型乙酰胆碱受体的正变构调节剂:主要是指人工合成的一些靶向α7烟碱型乙酰胆碱受体变构位点的化合物,通过对α7烟碱型乙酰胆碱受体的变构增加内源性配体乙酰胆碱与α7烟碱型乙酰胆碱受体的亲和力或效力。
背景:α7烟碱型乙酰胆碱受体在大脑皮质和海马高度表达,并在阿尔茨海默病的病理发展过程中起重要调控作用,是阿尔茨海默病治疗的潜在靶点。
目的:总结α7烟碱型乙酰胆碱受体和阿尔茨海默病的密切关系和相互作用机制。
方法:检索中国知网、PubMed数据库中相关文献,中文检索词为“α7烟碱型乙酰胆碱受体,阿尔茨海默病,β-淀粉样蛋白,激动剂,正变构调节剂,拮抗剂”;英文检索词为“alpha 7 nicotinic acetylcholine receptor,Alzheimer’s disease,beta amyloid protein,agonist,positive allosteric modulator,antagonist”,文献检索时限为各数据库建库至2024年7月,依据入选标准对检索结果进行录用或排除,最终纳入符合标准的83篇文献进行综述。
结果与结论:α7烟碱型乙酰胆碱受体通过与β-淀粉样蛋白的相互作用减轻β-淀粉样蛋白的神经毒性,如促进阿尔茨海默病的突触可塑性和胆碱能突触的快速传递、减轻β-淀粉样蛋白诱导的神经中枢炎症反应、抵抗神经细胞凋亡,从而对阿尔茨海默病患者的脑具有保护作用等。α7烟碱型乙酰胆碱受体作为阿尔茨海默病治疗靶标具有很大的潜能,但是又存在一系列问题有待解决,比如α7烟碱型乙酰胆碱受体的脱敏性、适度活性稳定性及基因多态性等问题。筛选高特异、安全性和以α7烟碱型乙酰胆碱受体为核心的多靶点结合作用的药物,将成为未来阿尔茨海默病治疗研究的一个方向。
https://orcid.org/0000-0002-9752-9829(张松江)
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程
中图分类号:
张松江, 李龙洋, 周春光. α7烟碱型乙酰胆碱受体与阿尔茨海默病的关系[J]. 中国组织工程研究, 2025, 29(18): 3915-3924.
Zhang Songjiang, Li Longyang, Zhou Chunguang. Relationship between alpha7 nicotinic acetylcholine receptor and Alzheimer’s disease[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(18): 3915-3924.
[1] Atanasova M, Dimitrov I, Ivanov S, et al. Virtual screening and hit selection of natural compounds as acetylcholinesterase inhibitors. Molecules. 2022;27(10):3139. [2] Duan Y, Lv J, Zhang Z, et al. Exogenous Aβ1-42 monomers improve synaptic and cognitive function in Alzheimer’s disease model mice. Neuropharmacology. 2022;209:109002. [3] Wu M, Liu CZ, Barrall EA, et al. Unbalanced regulation of alpha7 nAChRs by Ly6h and NACHO contributes to neurotoxicity in Alzheimer’s disease. J Neurosci. 2021;41(41):8461-8474. [4] Cao K, Xiang J, Dong YT, et al. Activation of alpha7 nicotinic acetylcholine receptor by its selective agonist improved learning and memory of amyloid precursor protein/presenilin 1 (APP/PS1)mice via the Nrf2/HO-1 pathway. Med Sci Monit. 2022;28:e933978. [5] Lin MW, Chen YH, Yang HB, et al. Galantamine inhibits Abeta(1-42)-induced neurotoxicity by enhancing alpha7nAChR expression as a cargo carrier for LC3 binding and Abeta(1-42) engulfment during autophagic degradation. Neurotherapeutics. 2020;17(2):676-689. [6] Han C. Corrigendum to “New mechanism of neuroinflflammation in Alzheimer’s disease: The activation of NLRP3 inflflammasome mediated by gut microbiota” [Progress in Neuropsychopharmacology & Biological Psychiatry 100 (2020) 109884]. Prog Neuropsychopharmacol Biol Psychiatry. 2022;114:110482. [7] Pastor V, Katche C. Dual role of alpha7 nicotinic acetylcholine receptors in the retrosplenial cortex for aversive memory acquisition and retrieval. Front Behav Neurosci. 2024;18:1359729. [8] Anni D, Weiss EM, Guhathakurta D, et al. Aβ1-16 controls synaptic vesicle pools at excitatory synapses via cholinergic modulation of synapsin phosphorylation. Cell Mol Life Sci. 2021;78(11):4973-4992. [9] Ren JM, Zhang SL, Wang XL, et al. Expression levels of the alpha7 nicotinic acetylcholine receptor in the brains of patients with Alzheimer’s disease and their effect on synaptic proteins in SH-SY5Y cells. Mol Med Rep. 2020;22(3):2063-2075. [10] Potasiewicz A, Faron-Gorecka A, Popik P, et al. Repeated treatment with alpha 7 nicotinic acetylcholine receptor ligands enhances cognitive processes and stimulates Erk1/2 and Arc genes in rats. Behav Brain Res. 2021;409:113338. [11] SCHRÖDER H, GIACOBINI E, STRUBLE RG, et al. Nicotinic cholinoceptive neurons of the frontal cortex are reduced in Alzheimer’s disease. Neurobiol Aging. 1991;12(3):259-262. [12] Briggs CA, McKenna DG, Piattoni-Kaplan M. Human alpha 7 nicotinic acetylcholine receptor responses to novel ligands. Neuropharmacology. 1995;34(6):583-590. [13] Liu Q, Kawai H, Berg DK. beta -Amyloid peptide blocks the response of alpha 7-containing nicotinic receptors on hippocampal neurons. Proc Natl Acad Sci U S A. 2001;98(8):4734-4739. [14] Olin J, Schneider L. Galantamine for Alzheimer’s disease. Cochrane Database Syst Rev. 2001;(1):CD001747. [15] Wang HY, Stucky A, Liu J, et al. Dissociating beta-amyloid from alpha 7 nicotinic acetylcholine receptor by a novel therapeutic agent, S 24795, normalizes alpha 7 nicotinic acetylcholine and NMDA receptor function in Alzheimer’s disease brain. J Neurosci. 2009;29(35):10961-10973. [16] Yang T, Xiao T, Sun Q, et al. The current agonists and positive allosteric modulators of α7 nAChR for CNS indications in clinical trials. Acta Pharm Sin B. 2017;7(6):611-622. [17] Wang X, Bell IM, Uslaner JM. Activators of α7 nAChR as potential therapeutics for cognitive impairment. Curr Top Behav Neurosci. 2020;45:209-245. [18] Singh S, Agrawal N, Goyal A. Role of alpha-7-nicotinic acetylcholine receptor in Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2024;23(3):384-394. [19] Papke RL, Horenstein NA. Therapeutic targeting of α7 nicotinic acetylcholine receptors. Pharmacol Rev. 2021;73(3):1118-1149. [20] Zoli M, Pistillo F, Gotti C. Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacology. 2015;96(Pt B): 302-311. [21] TERRY AV JR, JONES K, BERTRAND D. Nicotinic acetylcholine receptors in neurological and psychiatric diseases. Pharmacol Res. 2023;191: 106764. [22] Xu ZQ, Zhang WJ, Su DF, et al. Cellular responses and functions of α7 nicotinic acetylcholine receptor activation in the brain: A narrative review. Ann Transl Med. 2021;9(6):509. [23] Gass N, Weber-Fahr W, Sartorius A, et al. An acetylcholine alpha7 positive allosteric modulator rescues a schizophrenia-associated brain endophenotype in the 15q13.3 microdeletion, encompassing CHRNA7. Eur Neuropsychopharmacol.2016;26(7):1150-1160. [24] Shan H, Wang N, Gao X, et al. Fluorescent alpha-conotoxin [Q1G, deltaR14]LvIB identifies the distribution of alpha7 nicotinic acetylcholine receptor in the rat brain. Mar Drugs. 2024;22(5):200. [25] Roberts CF, Cao Y, Im W, et al. Neuroprotective amyloid beta N-terminal peptides differentially alter human alpha7- and alpha7beta2-nicotinic acetylcholine (nACh) receptor single-channel properties. Br J Pharmacol. 2024;181(17):3172-3191. [26] Cecon E, Dam J, Luka M, et al. Quantitative assessment of oligomeric amyloid β peptide binding to α7 nicotinic receptor. Br J Pharmacol. 2019;176(18):3475-3488. [27] Gao X, Guan Y, Wang C, et al. Specific interaction from different Aβ42 peptide fragments to α7nAChR-A study of molecular dynamics simulation. J Mol Model. 2024;30(7):233. [28] Burns LH, Pei Z, Wang HY. Targeting alpha7 nicotinic acetylcholine receptors and their protein interactions in Alzheimer’s disease drug development. Drug Dev Res. 2023;84(6):1085-1095. [29] Wang XL, Deng YX, Gao YM, et al. Activation of alpha7 nAChR by PNU-282987 improves synaptic and cognitive functions through restoring the expression of synaptic-associated proteins and the CaM-CaMKII-CREB signaling pathway. Aging (Albany NY). 2020;12(1):543-570. [30] Tropea MR, Li Puma DD, Melone M, et al. Genetic deletion of α7 nicotinic acetylcholine receptors induces an age-dependent Alzheimer’s disease-like pathology. Prog Neurobiol. 2021;206:102154. [31] Mekli K, Lophatananon A, Maharani A, et al. Association between an inflammatory biomarker scoreand future dementia diagnosis in the population-based UK Biobank cohort of 500,000 people. PLoS One. 2023;18(7):e0288045. [32] Wu YG, Song LJ, Yin LJ, et al. The effects and potential of microglial polarization and crosstalk with other cells of the central nervous system in the treatment of Alzheimer’s disease. Neural Regen Res. 2023;18(5):947-954. [33] Zhang H, Cao S, Xu Y, et al. Landscape of immune infiltration in entorhinal cortex of patients with Alzheimer’s disease. Front Pharmacol. 2022;13:941656. [34] MizrACHi T, Vaknin-Dembinsky A, Brenner T, et al. Neuroinflammation modulation via α7 nicotinic acetylcholine receptor and its chaperone, RIC-3. Molecules. 2021;26(20):6139. [35] Reale M, Costantini E. Cholinergic modulation of the immune system in neuroinflammatory diseases. Diseases. 2021;9(2):29. [36] Benfante R, Di Lascio S, Cardani S, et al. Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: a new therapeutic perspective in aging-related disorders. Aging Clin Exp Res. 2021;33(4):823-834. [37] Piovesana R, Salazar Intriago MS, Dini L, et al. Cholinergic modulation of neuroinflammation: Focus on α7 NicotinicReceptor. Int J Mol Sci. 2021;22(9):4912. [38] Xia Y, Wu Q, Mak S, et al. Regulation of acetylcholinesterase during the lipopolysaccharide-induced inflammatory responses in microglial cells. FASEB J. 2022;36(3):e22189. [39] Cantone AF, Burgaletto C, Di Benedetto G, et al. Taming microglia in Alzheimer’s disease: Exploring potential implications of choline alphoscerate via alpha7 nAChR modulation. Cells. 2024; 13(4):309. [40] 王志刚,苑进革,徐朋,等.电针预处理对老龄大鼠长期术后认知功能障碍影响及相关机制[J].科学技术与工程,2023,23(28):12004-12011. [41] SANJAY, SOOD R, JAISWAL V, et al. Nobiletin regulates intracellular Ca2+ levels via IP3R and ameliorates neuroinflammation in Aβ42-induced astrocytes. Redox Biol. 2024;73:103197. [42] BYCHKOV ML, ISAEV AB, ANDREEV-ANDRIEVSKIY AA, et al. Aβ1-42 Accumulation Accompanies Changed Expression of Ly6/uPAR Proteins, Dysregulation of the Cholinergic System, and Degeneration of Astrocytes in the Cerebellum of Mouse Model of Early Alzheimer Disease. Int J Mol Sci. 2023;24(19):14852. [43] Fontana IC, Kumar A, Nordberg A. The role of astrocytic alpha7 nicotinic acetylcholine receptors in Alzheimer disease. Nat Rev Neurol. 2023;19(5):278-288. [44] Mugayar AA, da Silva Guimarães G, de Oliveira PHT, et al. Apoptosis in the neuroprotective effect of alpha7 nicotinic receptor in neurodegenerative models. J Neurosci Res. 2023;101(12):1795-1802. [45] Darreh-Shori T, Rezaeianyazdi S, Lana E, et al.Increased active OMI/HTRA2 serine protease displays a positive correlation with cholinergic alterations in the Alzheimer’s disease brain. Mol Neurobiol. 2019;56(7):4601-4619. [46] Kumro J, Tripathi A, Terry AV Jr, et al. alpha7 nicotinic acetylcholine receptors are necessary for basal forebrain activation to increase expression of the nerve growth factor receptor TrkA. bioRxiv [Preprint]. 2024:2024.03.01.582932. doi: 10.1101/2024.03.01.582932. [47] Pucci S, Fasoli F, Moretti M, et al. Choline and nicotine increase glioblastoma cell proliferation by binding and activating alpha7- and alpha9- containing nicotinic receptors. Pharmacol Res. 2021;163:105336. [48] Kawasaki H, Hino H, Takayama F, et al. Regulatory effects of nicotine on neurite outgrowth in rat superior cervical ganglia cells. J Pharmacol Sci. 2022;148(1):103-107. [49] Dong Y, Bi W, Zheng K, et al. Nicotine prevents oxidative stress-induced hippocampal neuronal injury through α7-nAChR /Erk1/2 signaling pathway. Front Mol Neurosci. 2020;13:557647. [50] Boiangiu RS, Mihasan M, Gorgan DL, et al. Cotinine and 6-Hydroxy-L-Nicotine reverses memory deficits and reduces oxidative stress in Aβ25-35-induced rat model of Alzheimer’s disease. Antioxidants (Basel). 2020;9(8):768. [51] Ren Z, Dong Z, Xie P, et al. PNU282987 inhibits amyloidβ aggregation by upregulating astrocytic endogenous αBcrystallin and HSP70 via regulation of theα7 AChR, PI3K/Akt/HSF1 signaling axis. Mol Med Rep. 2020;22(1):201-208. [52] Chang KW, Zong HF, Wang M, et al. PNU282987 alleviates Aβ-induced anxiety and depressive-like behaviors through upregulation of α7 nAChR by ERK-serotonin receptors pathway. Neurosci Lett. 2020;731:135118. [53] Magnussen JH, Ettrup A, Lehel S, et al. Characterizing the binding of TC-5619 and encenicline on the alpha7 nicotinic acetylcholine receptor using PET imaging in the pig. Front Neuroimaging. 2024;3: 1358221. [54] Wallace TL, Callahan PM, Tehim A, et al. RG3487, a novel nicotinic α7 receptor partial agonist, improves cognition and sensorimotor gating in rodents. J Pharmacol Exp Ther. 2011;336(1): 242-253. [55] Papke RL, QuADri M, Gulsevin A. Silent agonists for alpha7 nicotinic acetylcholine receptors. Pharmacol Res. 2023;190:106736.
[56] Li Q, Nemecz Á, Aymé G, et,al. Generation of nanobodies acting as silent and positive allosteric modulators of the alpha7 nicotinic acetylcholine receptor. Cell Mol Life Sci. 2023;80(6):164. [57] Zhang Q, Lu Y, Bian H, et al. Activation of the alpha7 nicotinic receptor promotes lipopolysaccharide-induced conversion of M1 microglia to M2. Am J Transl Res. 2017;9(3):971-985. [58] Wang X, Daley C, Gakhar V, et al. Pharmacological characterization of the novel and selective alpha7 nicotinic acetylcholine receptor-positive allosteric modulator BNC375. J Pharmacol Exp Ther. 2020; 373(2):311-324. [59] TAKATA K, KIMURA H, YANAGISAWA D, et al. Nicotinic acetylcholine receptors and microglia as therapeutic and imaging targets in Alzheimer’s Disease. Molecules. 2022;27(9):2780. [60] Yang Y, Arai T, Sasaki D, et al. Real-time tilting and twisting motions of ligand-bound states of alpha7 nicotinic acetylcholine receptor. Eur Biophys J. 2024;53(1-2):15-25. [61] Maelicke A, Albuquerque EX. Allosteric modulation of nicotinic acetylcholine receptors as a treatment strategy for Alzheimer’s disease. Eur J Pharmacol. 2000;393(1-3):165-170. [62] WANG X, XIAO H, WANG J, et al. Synthesis and Biological Evaluation of Novel Triazine Derivatives as Positive Allosteric Modulators of alpha7 Nicotinic Acetylcholine Receptors. J Med Chem. 2021;64(16):12379-12396. [63] Li H, Gao J, Chang Y, et al. JWX-A0108, a positive allosteric modulator of alpha7 nAChR, attenuates cognitive deficits in APP/PS1 mice by suppressing NF-kappaB-mediated inflammation. Int Immunopharmacol. 2021;96:107726. [64] Yang C, Meng Y, Wang X, et al. Allosteric activation of α7 nicotinic acetylcholine receptors by novel 2-arylamino-thiazole-5-carboxylic acid amide derivatives for the improvement of cognitive deficits in mice. J Med Chem. 2024;67(8):6344-6364. [65] NOVIELLO CM, GHARPURE A, MUKHTASIMOVA N, et al. Structure and gating mechanism of the α7 nicotinic acetylcholine receptor. Cell. 2021;184(8):2121-2134.e13. [66] van Goethem NP, Paes D, Puzzo D, et al. Antagonizing α7 nicotinic receptors with methyllycaconitine (MLA) potentiates receptor activity and memory acquisition. Cell Signal. 2019;62:109338. [67] 汪志刚,戚仁斌,李卫,等.α7 烟碱受体拮抗剂对 Aβ蛋白诱导损伤的PC12 细胞保护作用的研究[J].中国神经精神疾病杂志,2011, 37(9):540-544. [68] 汪志刚,戚仁斌,李卫,等.α7 烟碱样乙酰胆碱受体拮抗剂减轻淀粉样β蛋白诱导的 PC12 细胞损伤的机制研究[J].中国病理生理杂志,2011,27(5):916-922. [69] Zheng X, Xie Z, Zhu Z, et al. Methyllycaconitine alleviates amyloid-β peptides-induced cytotoxicity in SH-SY5Y cells. PLoS One. 2014;9(10):e111536. [70] Oddsson S, Kowal NM, Ahring PK, et al. Structure-based discovery of dual-target hits for acetylcholinesterase and the α7 nicotinic acetylcholine receptors: In silico studies and in vitro confirmation. Molecules. 2020;25(12):2872. [71] Takata K, Amamiya T, Mizoguchi H, et al. α7 nicotinic acetylcholine receptor-specific agonist DMXBA(GTS-21) attenuates amyloid-βaccumulation through suppression of neuronalγ-secretase activity and promotion of microglial amyloid-β phagocytosis and ameliorates cognitive impairment in a mouse mode. Neurobiol Aging. 2018;62: 197-209. [72] Miller DR, Khoshbouei H, Garai S, et al. Allosterically potentiated α7 nicotinic acetylcholine receptors: Reduced calcium permeability and current-independent control of intracellular calcium. Mol Pharmacol. 2020;98(6):695-709. [73] LEE CH, HUNG SY. Physiologic functions and therapeuticapplications of α7 nicotinic acetylcholine receptor in brain disorders. Pharmaceutics. 2022;15(1):31. [74] 王紫涵,于津鹏,长孙东亭,等.α7烟碱型乙酰胆碱受体分子伴侣Tmem35a的克隆及其功能研究[J].药学学报,2024,59(7):1993-2001. [75] Puddifoot CA, Wu M, Sung RJ, et al. Ly6h regulates trafcking of alpha7 nicotinic acetylcholine receptors andnicotine-induced potentiation of glutamatergic signaling. J Neurosci. 2015;35(8):3420-3430. [76] Moriwaki Y, Kubo N, Watanabe M, et al. Endogenous neurotoxin-like protein Ly6H inhibits alpha7 nicotinic acetylcholine receptor currents at the plasma membrane. Sci Rep. 2020;10(1):11996. [77] Ranglani S, Hasan S, Komorowska J, et al. A novel peptide driving neurodegeneration appears exclusively linked to the alpha7 nicotinic acetylcholine receptor. Mol Neurobiol. 2024. doi: 10.1007/s12035-024-04079-7. [78] Graur A, Sinclair P, Schneeweis AK, et al. The human acetylcholinesterase C-terminal T30 peptide activatesneuronal growth through alpha 7 nicotinic acetylcholine receptorsand the mTOR pathway. Sci Rep. 2023;13(1):11434 [79] Greenfield SA, Cole GM, Coen CW, et al. A novel process driving Alzheimer’s disease validated in a mouse model: therapeutic potential. Alzheimers Dement (N Y). 2022;8(1):e12274. [80] Leonard S, Benfante R. Unanswered questions in the regulation and function of the duplicated alpha7 nicotinic receptor gene CHRFAM7A. Pharmacol Res. 2023;192:106783. [81] Pattanaik B, Hammarlund M, Mjörnstedt F, et al. Polymorphisms in alpha 7 nicotinic acetylcholine receptor gene, CHRNA7, and its partially duplicated gene, CHRFAM7A, associate with increased inflammatory response in human peripheral mononuclear cells. FASEB J. 2022;36(5):e22271. [82] Jiang Y, Yuan H, Huang L, et al. Global proteomic profiling of the uniquely human CHRFAM7A gene in transgenic mouse brain. Gene. 2019;714:143996. [83] Sumirtanurdin R, Thalib AY, Cantona K, et al. Effect of genetic polymorphisms on Alzheimer’s disease treatment outcomes: an update. Clin Interv Aging. 2019;14:631-642. |
[1] | 谢刘刚, 崔书克, 郭楠楠, 李遨宇, 张菁瑞. 干细胞治疗阿尔茨海默病的研究热点与前沿[J]. 中国组织工程研究, 2025, 29(7): 1475-1485. |
[2] | 李 甜, 任俞桦, 高艳萍, 苏 强. 阿戈美拉汀缓解APP/PS1转基因小鼠焦虑及抑郁样行为的机制[J]. 中国组织工程研究, 2025, 29(6): 1176-1182. |
[3] | 韩孟君, 许 芳. 造血干细胞动员:不同方案的优缺点及预测模型与技术提升[J]. 中国组织工程研究, 2025, 29(36): 7863-7871. |
[4] | 李 晨, 刘 晔, 倪新迪, 张宇昂. 多关节运动中小腿三头肌肌纤维和肌腱实时连续刚度仿真分析[J]. 中国组织工程研究, 2025, 29(35): 7529-7536. |
[5] | 杨 博, 潘新芳, 常留辉, 倪 勇. 超声心动图参数与急性缺血性脑卒中发病3个月时残疾的相关性[J]. 中国组织工程研究, 2025, 29(35): 7544-7551. |
[6] | 刘 璇, 丁雨晴, 夏若寒, 汪献旺, 胡淑娟. 运动防治胰岛素抵抗:Keap1/核因子E2相关因子2信号通路的作用与分子机制[J]. 中国组织工程研究, 2025, 29(35): 7578-7588. |
[7] | 巩月红, 王梦君, 任 航, 郑 辉, 孙佳佳, 刘军鹏, 张 飞, 杨建华, 胡君萍. 机器学习联合生物信息学筛选与自噬相关的肺纤维化关键基因及实验验证[J]. 中国组织工程研究, 2025, 29(35): 7679-7689. |
[8] | 韩 杰, 潘成镇, 尚昱志, 张 驰. 激素性股骨头坏死免疫诊断标志物的鉴定与药物筛选[J]. 中国组织工程研究, 2025, 29(35): 7690-7700. |
[9] | 方 源, 钱智勇, 何源哈达, 王海燕, 沙丽蓉, 李筱贺, 刘 婧, 贺雅超, 张 凯, 特木日巴根. 蒙药蓝刺头对血管内皮细胞增殖和血管生成能力的潜在作用机制[J]. 中国组织工程研究, 2025, 29(35): 7519-7528. |
[10] | 鄢来军, 葛海雅, 汪正明, 杨宗睿, 牛立峰, 詹红生. 通督活血汤抑制巨噬细胞炎症延缓大鼠椎间盘退变的机制[J]. 中国组织工程研究, 2025, 29(32): 6851-6857. |
[11] | 尼格阿依·艾合麦提, 伊丽丹娜·地里夏提, 安 玮, 买买提吐逊·吐尔地. 大鼠颞下颌关节骨关节炎模型中线粒体肌酸激酶2表达及在炎症进展中的作用[J]. 中国组织工程研究, 2025, 29(32): 6877-6884. |
[12] | 王子恒, 吴 霜. 脊髓损伤后氧化应激相关基因及分子机制:基于GEO数据库的数据分析及验证[J]. 中国组织工程研究, 2025, 29(32): 6893-6904. |
[13] | 周汝霖, 胡远征, 王宗清, 周国平, 张保朝, 徐 茜, 白方会. 烟雾病生物标志物及中药靶点分析[J]. 中国组织工程研究, 2025, 29(32): 6927-6938. |
[14] | 赵雪梅, 王 睿, 奥·乌力吉, 包书茵, 江小华. 蒙药沙蓬粗寡糖对小鼠滑膜细胞炎症和凋亡的影响[J]. 中国组织工程研究, 2025, 29(32): 6939-6946. |
[15] | 卫虎强, 吴合斌, 侯亚丽, 张翔泳, 王子轩, 王文璇, 白彩琴. 运动与蛋白质交互作用机制的进路整合[J]. 中国组织工程研究, 2025, 29(32): 6947-6954. |
1.1.8 检索文献量 重点检索2019年以来,尤其是2021年以来被SCI和北大中文核心及CSCD收录的文章,共得到文献1 429篇,包括中国知网162篇、PubMed数据库1 267篇。依据纳入标准与排除标准,最终纳入83篇文献,其中英文文献79篇、中文文献4篇。
1.2 入组标准
1.2.1 纳入标准 ①正式发表的、年份较新且高质量的中英文研究原著或综述;②与α7烟碱型乙酰胆碱受体相关的文献;③与阿尔茨海默病相关的文献;④与α7烟碱型乙酰胆碱受体激动剂、正变构调节剂、拮抗剂和阿尔茨海默病相关的文献;⑤论文中论据、论点充分且可靠的文献。
1.2.2 排除标准 ①重复或与研究主题无关的文献;②文献发表年份过于久远的文献;③Meta分析类文献;④无法获得全文的文献。
1.3 文献质量评估及数据提取 文献筛选与质量评估由所有作者共同讨论确认。英文文献借助 EndNote检索软件和依据中国科学院分区标准进行双重质量评估,中文文献手动逐一排查评估。中国科学院分区尽量选取1-3区的文献,尤其是1区和2区的文献。 EndNote检索软件的排序优先选择排名靠前、质量较高的文献。通过查阅相关数据库最初检索到1 429篇文献,阅读题目及摘要后保留187篇,通过阅读全文继续筛选符合文章主题的文献,根据纳入标准纳入主题明确、论证可靠、内容相关的文献,排除证据模糊、内容不清晰的文献,最终纳入83篇文献,包括中文文献4 篇及英文文献79篇。文献筛选流程见图2。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||