[1] TERAGUCHI M, YOSHIMURA N, HASHIZUME H, et al. Prevalence and distribution of intervertebral disc degeneration over the entire spine in a population-based cohort: the Wakayama Spine Study. Osteoarthritis Cartilage. 2014;22(1):104-110. 
 [2]	WEGNER M, BACKHAUSS JC, MICHALSKY Y, et al. Prevalence of degenerative vertebral disc changes in elite female Crossfit athletes - a cross-sectional study. BMC Musculoskelet Disord. 2023;24(1):963. 
 [3]	BRINJIKJI W, LUETMER PH, COMSTOCK B, et al. Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am J Neuroradiol. 2015;36(4):811-816. 
 [4]	LV Y, TIAN W, CHEN D, et al. The prevalence and associated factors of symptomatic cervical Spondylosis in Chinese adults: a community-based cross-sectional study. BMC Musculoskelet Disord. 2018;19(1):325. 
 [5]	KAZEMINASAB S, NEJADGHADERI S A, AMIRI P, et al. Neck pain: global epidemiology, trends and risk factors. BMC Musculoskelet Disord. 2022;23(1):26. 
 [6]	BAUCHER G, TASKOVIC J, TROUDE L, et al. Risk factors for the development of degenerative cervical myelopathy: a review of the literature. Neurosurg Rev. 2022; 45(2):1675-1689. 
 [7]	CHU X, LIU S, ZHAO X, et al. Case report: virtual reality-based arm and leg cycling combined with transcutaneous electrical spinal cord stimulation for early treatment of a cervical spinal cord injured patient. Front Neurosci. 2024;18:1380467.  
 [8]	LYU F J, CUI H, PAN H, et al. Painful intervertebral disc degeneration and inflammation: from laboratory evidence to clinical interventions. Bone Res. 2021;9(1):7. 
 [9]	WUERTZ K, HAGLUND L. Inflammatory mediators in intervertebral disk degeneration and discogenic pain. Global Spine J. 2013;3(3):175-184. 
[10]	RISBUD MV, SHAPIRO IM. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol. 2014;10(1):44-56. 
[11]	PENG B, DEPALMA MJ. Cervical disc degeneration and neck pain. J Pain Res. 2018;11:2853-2857. 
[12]	SMITH GD, EBRAHIM S. Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol. 2004;33(1):30-42. 
[13]	DAVIES NM, HOLMES MV, DAVEY SG. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601.  
[14]	WU GL, LIU YZ, ZHANG L. Editorial: Mendelian randomization: approach and applications. Front Genet. 2021;12:752146.  
[15]	ZHENG J, BAIRD D, BORGES MC, et al. Recent developments in mendelian randomization studies. Curr Epidemiol Rep. 2017;4(4):330-345. 
[16]	ZHAO JH, STACEY D, ERIKSSON N, et al. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets. Nat Immunol. 2023;24(9):1540-1551. 
[17]	陈世崧,黄凯,徐泓杰,等.91种炎症蛋白与5种心血管疾病的因果关系:双向孟德尔随机化研究[J].海军军医大学学报,2024,45(5):558-568. 
[18]	LI P, WANG H, GUO L, et al. Association between gut microbiota and preeclampsia-eclampsia: a two-sample Mendelian randomization study. BMC Med. 2022;20(1):443. 
[19]	XIAO Z, WANG Z, ZHANG T, et al. Bidirectional Mendelian randomization analysis of the genetic association between primary lung cancer and colorectal cancer. J Transl Med. 2023;21(1):722. 
[20]	PALMER TM, LAWLOR DA, HARBORD RM, et al. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat Methods Med Res. 2012;21(3): 223-242. 
[21]	YUAN S, WANG L, SUN J, et al. Genetically predicted sex hormone levels and health outcomes: phenome-wide Mendelian randomization investigation. Int J Epidemiol. 2022;51(6):1931-1942. 
	[22] SLOB E, BURGESS S. A comparison of robust Mendelian randomization methods using summary data. Genet Epidemiol. 2020;44(4):313-329. 
[23]	GRECO MF, MINELLI C, SHEEHAN NA, et al. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat Med. 2015; 34(21):2926-2940. 
[24]	HEMANI G, ZHENG J, ELSWORTH B, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408.  
[25]	BURGESS S, THOMPSON SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32(5):377-389. 
[26]	YUAN Z, ZHU H, ZENG P, et al. Testing and controlling for horizontal pleiotropy with probabilistic Mendelian randomization in transcriptome-wide association studies. Nat Commun. 2020;11(1):3861. 
[27]	HEMANI G, BOWDEN J, DAVEY SG. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet. 2018;27(R2):R195-R208. 
[28]	陈帅,金杰,韩化伟,等.两样本孟德尔随机化分析循环炎症细胞因子与骨密度的因果关联[J].中国组织工程研究,2025, 29(8):1556-1564. 
[29]	吴广涛,秦刚,何凯毅,等.免疫细胞与膝骨关节炎之间因果作用:一项两样本双向孟德尔随机化分析[J].中国组织工程研究,2025,29(5):1081-1090. 
[30]	BAI R, REN L, GUO J, et al. The causal relationship between pure hypercholesterolemia and psoriasis: a bidirectional, two-sample Mendelian randomization study. Skin Res Technol. 2023;29(12):e13533. 
[31]	LIU G, ZHANG H, CHEN M, et al. Causal relationship between intervertebral disc degeneration and osteoporosis: a bidirectional two-sample Mendelian randomization study. Front Endocrinol (Lausanne). 2024;15:1298531.  
[32]	TOMAR M, BHOWMIK NC, SINGH S, et al. Efficacy of individualized homeopathic medicines in the treatment of cervical spondylosis: a double-blind, randomized, placebo-controlled trial. Complement Med Res. 2023;30(1):26-36. 
[33]	TAO Y, GALBUSERA F, NIEMEYER F, et al. Radiographic cervical spine degenerative findings: a study on a large population from age 18 to 97 years. Eur Spine J. 2021; 30(2):431-443. 
[34]	CHEN X, WANG Z, DENG R, et al. Intervertebral disc degeneration and inflammatory microenvironment: expression, pathology, and therapeutic strategies. Inflamm Res. 2023;72(9):1811-1828. 
[35]	ZHENG Q, LIN R, WANG D, et al. Effects of circulating inflammatory proteins on spinal degenerative diseases: Evidence from genetic correlations and Mendelian randomization study. JOR Spine. 2024; 7(2):e1346. 
[36]	BIRNEY E. Mendelian randomization. Cold Spring Harb Perspect Med. 2022;12(4): a041302. 
[37]	IBANEZ CF, PARATCHA G, LEDDA F. RET-independent signaling by GDNF ligands and GFRalpha receptors. Cell Tissue Res. 2020; 382(1):71-82. 
[38]	PEREZ-GARCIA MJ, CENA V, de PABLO Y, et al. Glial cell line-derived neurotrophic factor increases intracellular calcium concentration. Role of calcium/calmodulin in the activation of the phosphatidylinositol 3-kinase pathway. J Biol Chem. 2004;279(7): 6132-6142. 
[39]	LI T T, REN WH, XIAO X, et al. NMDA NR2A and NR2B receptors in the rostral anterior cingulate cortex contribute to pain-related aversion in male rats. Pain. 2009;146(1-2): 183-193. 
[40]	CORTES D, CARBALLO-MOLINA OA, CASTELLANOS-MONTIEL MJ, et al. The non-survival effects of glial cell line-derived neurotrophic factor on neural cells. Front Mol Neurosci. 2017;10:258.  
[41]	YAMADA J, AKEDA K, SANO T, et al. Expression of glial cell line-derived neurotrophic factor in the human intervertebral disc. Spine (Phila Pa 1976). 2020;45(13):E768-E775. 
[42]	CHAKMA CR, GOOD-JACOBSON KL. Requirements of IL-4 during the generation of B cell memory. J Immunol. 2023;210(12): 1853-1860. 
[43]	NELMS K, KEEGAN AD, ZAMORANO J, et al. The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol. 1999;17:701-738.  
[44]	HERSHEY GK. IL-13 receptors and signaling pathways: an evolving web. J Allergy Clin Immunol. 2003;111(4):677-690. 
[45]	GAO F, DENG C, WANG Z, et al. Causal relationship of interferon-gamma and interleukin-18 upstream of intervertebral disc degeneration pathogenesis: a two-sample Mendelian randomization study. Front Neurol. 2024;15:1420942.  
[46]	KEDONG H, WANG D, SAGARAM M, et al. Anti-inflammatory effects of interleukin-4 on intervertebral disc cells. Spine J. 2020; 20(1):60-68. 
[47]	SINGH S, ANSHITA D, RAVICHANDIRAN V. MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol. 2021;101(Pt B):107598. 
[48]	YOSHIMURA T, LI C, WANG Y, et al. The chemokine monocyte chemoattractant protein-1/CCL2 is a promoter of breast cancer metastasis. Cell Mol Immunol. 2023; 20(7):714-738. 
[49]	KAWAI M, INOUE T, INATANI M, et al. Elevated levels of monocyte chemoattractant protein-1 in the aqueous humor after phacoemulsification. Invest Ophthalmol Vis Sci. 2012;53(13):7951-7960. 
[50]	SANTAELLA A, KUIPERIJ HB, van RUMUND A, et al. Cerebrospinal fluid monocyte chemoattractant protein 1 correlates with progression of Parkinson’s disease. NPJ Parkinsons Dis. 2020;6(1):21. 
[51]	ZHANG XW, QIN X, QIN CY, et al. Expression of monocyte chemoattractant protein-1 and CC chemokine receptor 2 in non-small cell lung cancer and its significance. Cancer Immunol Immunother. 2013;62(3):563-570. 
[52]	AKHTER S, TASNIM FM, ISLAM MN, et al. Role of Th17 and IL-17 cytokines on inflammatory and auto-immune diseases. Curr Pharm Des. 2023;29(26):2078-2090. 
[53]	SUN L, WANG L, MOORE BB, et al. IL-17: Balancing protective immunity and pathogenesis. J Immunol Res. 2023;2023: 3360310.  
[54]	MILOVANOVIC J, ARSENIJEVIC A, STOJANOVIC B, et al. Interleukin-17 in chronic inflammatory neurological diseases. Front Immunol. 2020;11:947.  
[55]	OU-YANG DC, KLECK CJ, ACKERT-BICKNELL CL. Genetics of intervertebral disc degeneration. Curr Osteoporos Rep. 2023;21(1):56-64. 
[56]	ZHANG K, GAO L, WANG HX, et al. Interleukin-18 inhibition protects against intervertebral disc degeneration via the inactivation of caspase-3/9 dependent apoptotic pathways. Immunol Invest. 2022; 51(6):1895-1907. 
[57]	IHIM SA, ABUBAKAR SD, ZIAN Z, et al. Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: biological role in induction, regulation, and treatment. Front Immunol. 2022;13:919973. 
[58]	LYKHOPIY V, MALVIYA V, HUMBLET-BARON S, et al. “IL-2 immunotherapy for targeting regulatory T cells in autoimmunity”. Genes Immun. 2023;24(5):248-262. 
[59]	HASHIMOTO M, ARAKI K, CARDENAS MA, et al. PD-1 combination therapy with IL-2 modifies CD8(+) T cell exhaustion program. Nature. 2022;610(7930):173-181. 
[60]	NIEDERLOVA V, TSYKLAURI O, KOVAR M, et al. IL-2-driven CD8(+) T cell phenotypes: implications for immunotherapy. Trends Immunol. 2023;44(11):890-901. 
[61]	WHYTE CE, SINGH K, BURTON OT, et al. Context-dependent effects of IL-2 rewire immunity into distinct cellular circuits. J Exp Med. 2022;219(7):e20212391. 
[62]	SKRIVANKOVA VW, RICHMOND RC, WOOLF B, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: the STROBE-MR Statement. JAMA. 2021;326(16):1614-1621. 
[63]	Le MAITRE CL, HOYLAND JA, FREEMONT AJ. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile. Arthritis Res Ther. 2007;9(4):R77. 
[64]	XU J, NUNEZ G. The NLRP3 inflammasome: activation and regulation. Trends Biochem Sci. 2023;48(4):331-344. 
[65]	WANG J, MARKOVA D, ANDERSON DG, et al. TNF-alpha and IL-1beta promote a disintegrin-like and metalloprotease with thrombospondin type I motif-5-mediated aggrecan degradation through syndecan-4 inintervertebral disc. J Biol Chem. 2011; 286(46):39738-39749. 
[66]	SHAN C, ZHANG C, ZHANG C. The role of IL-6 in neurodegenerative disorders. Neurochem Res. 2024;49(4):834-846. 
[67]	CLARK DN, BEGG LR, FILIANO AJ. Unique aspects of IFN-gamma/STAT1 signaling in neurons. Immunol Rev. 2022;311(1):187-204. 
  |