中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (9): 1761-1767.doi: 10.12307/2025.123

• 数字化骨科Digital orthopedics •    下一篇

颈椎前路椎体骨化物可控前移融合对后纵韧带骨化物和内植物影响的有限元分析

李良奎1,2,黄永灿2,3,王  鹏2,4,于滨生2,3   

  1. 1遵义医科大学珠海校区,广东省珠海市   519041;2深圳市脊柱外科重点实验室,北京大学深圳医院脊柱外科,广东省深圳市   518036;3深圳北京大学香港科技大学医学中心骨病研究所,广东省深圳市   518036;4安徽医科大学北京大学深圳医院临床学院,广东省深圳市   518036
  • 收稿日期:2023-10-07 接受日期:2024-01-14 出版日期:2025-03-28 发布日期:2024-10-09
  • 通讯作者: 于滨生,博士,教授,主任医师,硕士生导师,深圳市脊柱外科重点实验室,北京大学深圳医院脊柱外科,广东省深圳市 518036;深圳北京大学香港科技大学医学中心骨病研究所,广东省深圳市 518036
  • 作者简介:李良奎,男,1996年生,贵州省盘州市人,汉族,遵义医科大学在读硕士,主要从事颈椎退变性疾病研究。
  • 基金资助:
    深圳市脊柱外科重点实验室项目(ZDSYS201505051109056),项目负责人:于滨生

Effect of anterior controllable anteriodisplacement and fusion on vertebrae-ossification of posterior longitudinal ligament complex and implants: a finite element analysis

Li Liangkui1, 2, Huang Yongcan2, 3, Wang Peng2, 4, Yu Binsheng2, 3   

  1. 1Zhuhai Campus, Zunyi Medical University, Zhuhai 519041, Guangdong Province, China; 2Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery of Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China; 3Institute of Orthopedics, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong Province, China; 4Clinical College, Peking University Shenzhen Hospital, Anhui Medical University, Shenzhen 518036, Guangdong Province, China
  • Received:2023-10-07 Accepted:2024-01-14 Online:2025-03-28 Published:2024-10-09
  • Contact: Yu Binsheng, MD, Professor, Chief physician, Master’s supervisor, Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery of Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China; Institute of Orthopedics, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong Province, China
  • About author:Li Liangkui, Master candidate, Zhuhai Campus, Zunyi Medical University, Zhuhai 519041, Guangdong Province, China; Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery of Peking University, Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
  • Supported by:
    Shenzhen Key Laboratory of Spinal Surgery, No. ZDSYS201505051109056 (to YBS)

摘要:



文题释义
颈椎后纵韧带骨化症:指因颈椎后纵韧带发生骨化,压迫邻近脊髓或者神经根而产生肢体运动感觉障碍以及内脏自主神经功能紊乱的疾病。
颈椎前路椎体骨化物可控前移融合术:将受累节段的骨化韧带和相应节段的椎体看成一个整体,即椎体骨化物复合体,根据骨化韧带的厚度切除相应椎体前柱的厚度,不需要直接切除骨化物,利用预弯曲的钛板和螺钉将分离好的椎体骨化物复合体向前提拉,从而实现对脊髓的直接原位解压作用。

摘要
背景:颈椎前路椎体骨化物可控前移融合对颈椎力学的影响尚未明确,既往研究主要集中在颈椎前路椎体骨化物可控前移融合的手术技巧、中长期疗效和术后并发症等。
目的:运用有限元方法分析颈椎前路椎体骨化物可控前移融合对颈椎后纵韧带骨化物和内植物生物力学的影响。
方法:选择一名健康男性志愿者进行全颈椎薄层CT扫描,应用有限元分析软件构建正常全颈椎模型,与既往文献进行对比验证其有效性;随后在模型上构建累及C4、C5和C6节段的连续型颈椎后纵韧带骨化物的术前模型;以术前模型为基础,创建颈椎前路椎体骨化物可控前移融合手术三维有限元模型,约束2个模型C7椎体下表面,于C1椎体上表面施加50 N的轴向力和1.0 N·m的力矩,在屈伸、侧弯、旋转6个工况下,分析颈椎前路椎体骨化物可控前移融合对骨化物和内植物应力的影响。
结果与结论:①从术前模型得出骨化物应力主要集中在C4/5节段,在前屈、后伸、左侧弯、右侧弯、左旋转、右旋转6个工况下骨化物最大应力分别为10.1,148.6,68.9,74.8,83.8和85.1 MPa;②颈椎前路椎体骨化物可控前移融合术后,骨化物应力集中分布区域未见明显改变,但该手术会改变骨化物应力大小,除在前屈位颈椎前路椎体骨化物可控前移融合模型骨化物应力较术前模型增大(+44.7%)外,在其他5个工况下,骨化物应力较术前模型明显降低,其中后伸位下降最明显(-74.1%),在左侧弯、右侧弯、左旋转、右旋转下骨化物应力分别下降62.2%,63.3%,66.4%,67.9%;③钛板、螺钉应力主要集中在头尾两端,后伸应力最大(149.5 MPa),前屈应力最小(43.3 MPa);4个椎间融合器应力主要集中在C3/4、C6/7融合器,应力主要分布在融合器的上下表面周围,后伸应力最大(30.8 MPa),前屈应力最小(11.5 MPa);内植物(钛板、螺钉和椎间融合器)应力主要集中于头尾两端,应力较大易导致头尾两端钛板、螺钉断裂和内植物下沉;④提示颈椎前路椎体骨化物可控前移融合能明显降低骨化物应力,可能有助于防止过度增生从而压迫神经,在术后需密切关注头尾两端螺钉松动、断裂或钛板移位、断裂等情况。


中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程


关键词: 颈椎后纵韧带骨化症, 颈椎前路椎体骨化物可控前移融合术, 有限元分析, 韧带骨化物, 内植物, 生物力学

Abstract: BACKGROUND: The effect of anterior controllable anteriodisplacement and fusion on the biomechanics of cervical spine is still unclear. Previous studies have majorly focused on surgical techniques, the medium- and long-term efficacy, and postoperative complications of anterior controllable anteriodisplacement and fusion. 
OBJECTIVE: To analyze the biomechanical effects of anterior controllable anteriodisplacement and fusion on vertebrae-ossification of posterior longitudinal ligament complex and implants of the cervical spine using finite element method.
METHODS: A healthy male volunteer was recruited for CT scanning of the entire cervical spine. Using the finite element analysis software, a normal whole cervical spine model was constructed and its validity was verified by comparison with the previous articles. Subsequently, a preoperative model of continuous posterior longitudinal ligament ossification involving C4, C5, and C6 was constructed. Based on the preoperative model, a three-dimensional finite element model of anterior controllable anteriodisplacement and fusion was created. After constrain of the lower surface of the C7 vertebral body of the two models, an axial force of 50 N and a moment of 1.0 N·m were applied to the upper surface of the C1 cone body. Under forward flexion, posterior extension, left/right bending, and left/right rotation conditions, the effects of anterior controllable anteriodisplacement and fusion on vertebrae-ossification of posterior longitudinal ligament complex and implants were further analyzed. 
RESULTS AND CONCLUSION: (1) From the preoperative model, it was found that the ossification stress was mainly concentrated in the C4/5 segment; the maximum stresses of vertebrae-ossification of posterior longitudinal ligament complex under the conditions of forward flexion, posterior extension, left bending, right bending, left rotation and right rotation were 10.1, 148.6, 68.9, 74.8, 83.8, and 85.1 MPa, respectively. (2) After anterior controllable anteriodisplacement and fusion, the distribution area of stress concentration at the vertebrae-ossification of posterior longitudinal ligament complex did not change significantly, but the values were decreased obviously; in addition to the increase of stress (+44.7%) in the anterior flexion at the surgical model of anterior controllable anteriodisplacement and fusion, when compared with the preoperative one, the anterior controllable anteriodisplacement and fusion stress was significantly lower than that in the preoperative model under the other five working conditions, in which the value was decreased by -74.1% at the posterior extension position. Under the left bending, right bending, left rotation and right rotation, the ossification stress was decreased by 62.2%, 63.3%, 66.4%, and 67.9%, respectively. (3) The stress of titanium plate and screw was mainly concentrated at the both ends; the largest posterior extension stress was 149.5 MPa while the smallest forward flexion stress was 43.3 MPa. The stress of the four intervertebral cages was mainly concentrated at the C3/4 and C6/7 ones; and the stress was mainly distributed around the upper and lower surfaces of the fusion device, its value ranging from 30.8 MPa (the largest extension stress) to 11.5 MPa (the lowest forward flexion stress). The stress of the implants (titanium plate, screw, and intervertebral cage) was mainly concentrated at the two ends with the largest values, which would lead to the fracture of the titanium plate screw and the loosening of the screws. (4) In conclusion, anterior controllable anteriodisplacement and fusion was able to significantly reduce the stress of vertebrae-ossification of posterior longitudinal ligament complex, and may help prevent excessive proliferation and compression of nerves. After surgery, much attention should be paid to the occurrence of loosening of the screws, or displacement and fracture of titanium plates at the both ends.

Key words: ossification of posterior longitudinal ligament, anterior controllable anteriodisplacement and fusion, finite element analysis, ligament ossification, internal implant, biomechanics

中图分类号: