中国组织工程研究 ›› 2021, Vol. 25 ›› Issue (22): 3473-3478.doi: 10.3969/j.issn.2095-4344.3173

• 复合支架材料 composite scaffold materials • 上一篇    下一篇

脱细胞猪皮基质构建组织工程半月板支架

王   皓1,2,陈明学2,3,李俊康2,罗旭江1,2,彭礼庆1,2,李   获1,2,黄   波1,2,田广招2,刘舒云2,眭   翔2,黄靖香2,郭全义2,鲁晓波1   

  1. 1西南医科大学附属医院骨与关节外科,四川省泸州市   646000;2中国人民解放军总医院骨科研究所,骨科再生医学北京市重点实验室,全军骨科战创伤重点实验室,北京市  100853;3北京积水潭医院矫形骨科,北京市  100035
  • 收稿日期:2020-07-07 修回日期:2020-07-13 接受日期:2020-08-19 出版日期:2021-08-08 发布日期:2021-01-19
  • 通讯作者: 郭全义,教授,主任医师,中国人民解放军总医院骨科研究所,骨科再生医学北京市重点实验室,全军骨科战创伤重点实验室,北京市 100853 鲁晓波,教授,主任医师,西南医科大学附属医院骨与关节外科,四川省泸州市 646000
  • 作者简介:王皓,男,1991年生,四川省泸州市人,汉族,西南医科大学在读硕士,主要从事半月板修复方向的研究。
  • 基金资助:
    国家重点研发计划(2017YFC1103400),项目参与者:刘舒云;国家自然科学基金(81972070),项目负责人:郭全义

Decellularized porcine skin matrix for tissue-engineered meniscus scaffold

Wang Hao1, 2, Chen Mingxue2, 3, Li Junkang2, Luo Xujiang1, 2, Peng Liqing1, 2, Li Huo1, 2, Huang Bo1, 2, Tian Guangzhao2, Liu Shuyun2, Sui Xiang2, Huang Jingxiang2, Guo Quanyi2, Lu Xiaobo1   

  1. 1Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China; 2Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing 100853, China; 3Department of Orthopedics, Beijing Jishuitan Hospital, Beijing 100035, China
  • Received:2020-07-07 Revised:2020-07-13 Accepted:2020-08-19 Online:2021-08-08 Published:2021-01-19
  • Contact: Guo Quanyi, Professor, Chief physician, Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing 100853, China Lu Xiaobo, Professor, Chief physician, Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
  • About author:Wang Hao, Master candidate, Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China; Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing 100853, China
  • Supported by:
    the National Key R&D Program of China, No. 2017YFC1103400 (to LSY); the National Natural Science Foundation of China, No. 81972070 (to GQY)

摘要:

文题释义:
脱细胞猪皮基质:猪皮基质的主要成分是I型胶原蛋白(80%-85%),采用胰蛋白酶、Triton X-100、十二烷基磺酸钠组合脱细胞处理制备的脱细胞猪皮基质,可很好地保留胶原蛋白成分,并具有良好的生物力学性能。
组织工程支架:组织工程的关键要素包括种子细胞、支架材料和活性因子,组织工程支架可为种子细胞提供生长微环境,是种子细胞生长代谢及排泄代谢产物的载体。

背景:半月板损伤的再生修复目前仍然是一个科学性难题,构建具有良好生物力学性能与细胞相容性的组织工程支架至关重要。
目的:制备脱细胞猪皮基质支架,评价其生物力学性能和细胞相容性。
方法:采用胰蛋白酶、Triton X-100、十二烷基磺酸钠组合对猪皮进行脱细胞处理,获得脱细胞猪皮基质,采用DAPI染色观察脱细胞效果,扫描电镜观察其微观结构。通过组织学染色、胶原和糖胺多糖定量及生物力学检测对比脱细胞猪皮基质与天然半月板的差异。将第3代骨髓间充质干细胞接种于脱细胞猪皮基质上,培养3 d后分别进行扫描电镜、死/活细胞染色和鬼笔环肽染色观察。
结果与结论:①DAPI染色显示,脱细胞猪皮基质无细胞核结构;扫描电镜显示,脱细胞猪皮基质表面较为粗糙,表面纤维呈拓扑学结构;②组织学染色显示,天然半月板组织含有丰富的细胞外基质,半月板细胞在基质中均匀分布,胶原纤维致密且排列规则,胶原成分主要以Ⅰ型胶原纤维为主,含有糖胺多糖成分;脱细胞猪皮基质无细胞核,呈疏松的纤维条索状,有较多的孔隙结构,胶原成分主要以Ⅰ型胶原纤维为主,含有糖胺多糖成分;③脱细胞猪皮基质的胶原含量、拉伸弹性模量与天然半月板比较差异无显著性意义(P > 0.05),糖胺多糖含量、压缩弹性模量低于天然半月板(P < 0.05),并且脱细胞猪皮基质的生物力学性能足够承受膝关节的负荷、保持支架的完整;④扫描电镜显示,骨髓间充质干细胞黏附分布在猪皮基质的孔隙结构中,细胞呈椭圆形,聚集生长;⑤死/活细胞染色显示,脱细胞猪皮基质上的骨髓间充质干细胞具有较高的活性(94.0±3.8)%;⑥鬼笔环肽/DAPI染色显示,骨髓间充质干细胞在脱细胞猪皮基质上呈现出很好的铺展状;⑦结果表明,脱细胞猪皮基质与天然半月板具有类似的胶原成分,呈现出良好的生物力学性能和细胞相容性,有利于细胞的黏附和生长。
https://orcid.org/0000-0002-5351-377X (王皓) 

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

关键词: 半月板, 组织工程, 脱细胞支架, 猪皮基质, 胶原, 细胞外基质

Abstract: BACKGROUND: Regeneration and repair of the injured meniscus remain scientific challenges. It is of significance to construct a tissue-engineered scaffold with good biomechanical performance and cytocompatibility.
OBJECTIVE: To prepare decellularized porcine skin matrix scaffold and evaluate its biomechanical properties and cytocompatibility.
METHODS: Porcine skin was decellularized with the combination of trypsin, Triton X-100 and sodium dodecyl sulfate to obtain decellularized porcine skin matrix. DAPI staining was used to observe whether the cells were well removed and scanning electron microscope to observe its microstructure. The decellularized porcine skin matrix was compared with natural meniscus in term of histological staining, contents of collagen and glycosaminoglycans, and biomechanical properties. The third-generation bone marrow mesenchymal stem cells were seeded on the decellularized porcine skin matrix. After 3 days of culture, the scanning electron microscopy, dead/live cell staining and phalloidin staining were used to observe cytocompatibility of the decellularized porcine skin matrix.
RESULTS AND CONCLUSION: (1) DAPI staining showed that no cell nucleus was found in the decellularized porcine skin matrix. Scanning electron microscopy showed that the surface of the decellularized porcine skin matrix was rough, and the surface fibers showed a topological structure. (2) Histological staining showed that the natural meniscus tissue was rich in extracellular matrix, and the meniscus cells were evenly distributed in the matrix. The collagen fibers were dense and arranged regularly, and the collagen composition was mainly type I collagen fibers and contained glycosaminoglycan components. The decellularized porcine skin matrix had no cell nucleus and was in the shape of loose fiber strips with more pore structure, and its collagen component was mainly type I collagen fiber and contained glycosaminoglycan components. (3) There was no significant difference in collagen content and tensile modulus between decellularized porcine skin matrix and natural meniscus (P > 0.05), while the glycosaminoglycan content and compression modulus were lower than those of the natural meniscus (P < 0.05). The biomechanical properties of the decellularized porcine skin matrix are sufficient to bear the load of the knee joint and maintain the integrity of the scaffold. (4) Scanning electron microscope showed that bone marrow mesenchymal stem cells adhered to the pore structure of porcine skin matrix, and the cells were elliptical and grew in clusters. (5) Dead/live cell staining showed that the bone marrow mesenchymal stem cells on the decellularized porcine skin matrix had high activity (94.0±3.8)%. (6) Phalloidin/DAPI staining showed that bone marrow mesenchymal stem cells showed good spreading on the decellularized porcine skin matrix. (7) The results showed that decellularized porcine skin matrix has similar collagen components as the natural meniscus, and presents good biomechanical performance and cytocompatibility, and is conducive to cell adhesion and growth.

Key words: meniscus, tissue engineering, decellularized scaffold, porcine skin matrix, collagen, extracellular matrix

中图分类号: