[1] ZHAO Y, CAO G, WANG Z, et al. The recent progress of bone regeneration materials containing EGCG.Mater Chem B. 2024;12(39):9835-9844.
[2] ALAM M, ALI S, ASHRAF GM, et al. Epigallocatechin 3-gallate: From green tea to cancer therapeutics. Food Chem. 2022;379:132-135.
[3] MOKRA D, JOSKOVA M, MOKRY J. Therapeutic Effects of Green Tea Polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis . Int J Mol Sci. 2022; 24(1):340-366.
[4] DE PACE RC, LIU X, SUN M, et al. Anticancer activities of (-)-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells. J Liposome Res. 2013; 23(3):187-196.
[5] SINGH BN, SHANKAR S, SRIVASTAVA RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol. 2011;82(12):1807-1821.
[6] WU P, ZHANG H, YIN Y, et al. Engineered EGCG-Containing Biomimetic Nanoassemblies as Effective Delivery Platform for Enhanced Cancer Therapy. Adv Sci (Weinh). 2022;9(15):1-12.
[7] 闫晓佳,梁秀萍,李思琪,等.表没食子儿茶素没食子酸酯性质、稳定性及其递送体系的研究进展[J].食品科学, 2020,41(1):258-266.
[8] KATIYAR SK, AGARWAL R, MUKHTAR H. Inhibition of spontaneous and photo-enhanced lipid peroxidation in mouse epidermal microsomes by epicatechin derivatives from green tea. Cancer Lett. 1994;79(1):61-66.
[9] LIN YL, LIN JK. (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB. Mol Pharmacol. 1997;52(3):465-472.
[10] KATIYAR SK, AFAQ F, AZIZUDDIN K, et al. Inhibition of UVB-induced oxidative stress-mediated phosphorylation of mitogen-activated protein kinase signaling pathways in cultured human epidermal keratinocytes by green tea polyphenol (-)-epigallocatechin-3-gallate. Toxicol Appl Pharmacol. 2001;176(2):110-117.
[11] AZAM S, HADI N, KHAN NU, et al. Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: implications for anticancer properties. Toxicol In Vitro. 2004;18(5):555-561.
[12] ZU YG, YUAN S, ZHAO XH, et al. [Preparation, activity and targeting ability evaluation in vitro on folate mediated epigallocatechin-3-gallate albumin nanoparticles] . Yao Xue Xue Bao. 2009;44(5):525-531.
[13] LAMBERT JD, KENNETT MJ, SANG S, et al. Hepatotoxicity of high oral dose (-)-epigallocatechin-3-gallate in mice . Food Chem Toxicol. 2010;48(1):409-416.
[14] YAN X, ZHANG X, MCCLEMENTS DJ, et al.
Co-encapsulation of Epigallocatechin Gallate (EGCG) and Curcumin by Two Proteins-Based Nanoparticles: Role of EGCG. J Agric Food Chem. 2019;67(48): 13228-13236.
[15] ZHANG J, NIE S, ZU Y, et al. Anti-atherogenic effects of CD36-targeted epigallocatechin gallate-loaded nanoparticles . J Control Release. 2019;303:263-273.
[16] ZHANG S, HAN X, CHEN X, et al. Rational Design of a Triple Tumor Microenvironment-Responsive Nanoplatform for Enhanced Tumor Theranostics. Chemistry. 2023;29(7): e202202469.
[17] LIU L, WANG W, HUANG L, et al. Injectable pathological microenvironment-responsive anti-inflammatory hydrogels for ameliorating intervertebral disc degeneration. Biomaterials. 2024;306: 122509.
[18] FARHAN M. Green Tea Catechins: Nature’s Way of Preventing and Treating Cancer. Int J Mol Sci. 2022;23(18):10713.
[19] NEHA, CHAUDHARY S, TIWARI P, et al.
Amelioration of Phytanic Acid-Induced Neurotoxicity by Nutraceuticals: Mechanistic Insights. Mol Neurobiol. 2024; 61(10):7303-7318.
[20] NISSANKA N, MORAES CT. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett. 2018;592(5):728-742.
[21] HUANG X, CHU Y, REN H, et al. Antioxidation Function of EGCG by Activating Nrf2/HO‐1 Pathway in Mice with Coronary Heart Disease. Contrast Media Mol Imaging. 2022; 2022:8639139.
[22] LU Y, WANG Y, XIONG L, et al. Physiological Dose of EGCG Attenuates the Health Defects of High Dose by Regulating MEMO‐1 inCaenorhabditis elegans. Oxid Med Cell Longev. 2021;2021:5546493.
[23] 李昕卓,郑丽丽,艾斌凌,等.黄嘌呤氧化酶多酚抑制剂的筛选及其作用机制[J].食品研究与开发,2020,41(9):12-19.
[24] 刘婷婷,孟馨.表没食子儿茶素没食子酸酯抗氧化作用机制的研究进展[J].现代药物与临床,2016,31(6):919-923.
[25] OLIVEIRA MR, NABAVI SF, DAGLIA M, et al. Epigallocatechin gallate and mitochondria-A story of life and death. Pharmacol Res. 2016;104:70-85.
[26] SARKAR J, DAS M, HOWLADER M, et al.
Epigallocatechin-3-gallate inhibits osteoclastic differentiation by modulating mitophagy and mitochondrial functions. Cell Death Dis. 2022;13(10):908.
[27] ZHAO Y, ZHANG J, ZHENG Y, et al. NAD(+) improves cognitive function and reduces neuroinflammation by ameliorating mitochondrial damage and decreasing ROS production in chronic cerebral hypoperfusion models through Sirt1/PGC-1alpha pathway. J Neuroinflammation. 2021;18(1):207.
[28] KIM TY, LEEM E, LEE JM, et al. Control of Reactive Oxygen Species for the Prevention of Parkinson’s Disease: The Possible Application of Flavonoids. Antioxidants (Basel). 2020;9(7):583.
[29] VALVERDE-SALAZAR V, RUIZ-GABARRE D, GARCIA-ESCUDERO V. Alzheimer’s Disease and Green Tea: Epigallocatechin-3-Gallate as a Modulator of Inflammation and Oxidative Stress. Antioxidants (Basel). 2023;12(7):1460.
[30] ZHANG Q, LIU J, DUAN H, et al. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J Adv Res. 2021;34:43-63.
[31] YU Q, ZHANG N, GAN X, et al. EGCG attenuated acute myocardial infarction by inhibiting ferroptosis via miR-450b-5p/ACSL4 axis. Phytomedicine. 2023;119:154999.
[32] ZHANG B, YANG Y, YI J, et al. Hyperglycemia modulates M1/M2 macrophage polarization via reactive oxygen species overproduction in ligature-induced periodontitis. J Periodontal Res. 2021;56(5):991-1005.
[33] LAHA D, SARKAR J, MAITY J, et al. Polyphenolic Compounds Inhibit Osteoclast Differentiation While Reducing Autophagy through Limiting ROS and the Mitochondrial Membrane Potential. Biomolecules. 2022; 12(9):1220.
[34] YANG Y, LIU Z, WU J, et al. Nrf2 Mitigates RANKL and M-CSF Induced Osteoclast Differentiation via ROS-Dependent Mechanisms. Antioxidants (Basel). 2023;12(12):2094.
[35] FENG Q, ZHANG M, ZHANG G, et al. A whole-course-repair system based on ROS/glucose stimuli-responsive EGCG release and tunable mechanical property for efficient treatment of chronic periodontitis in diabetic rats. J Mater Chem B. 2024; 12(15):3719-3740.
[36] HE Z, LUO H, WANG Z, et al. Injectable and tissue adhesive EGCG-laden hyaluronic acid hydrogel depot for treating oxidative stress and inflammation. Carbohydr Polym. 2023;299:120180.
[37] FUJITA K, OTSUKA T, YAMAMOTO N, et al.
(-)-Epigallocatechin gallate but not chlorogenic acid upregulates osteoprotegerin synthesis through regulation of bone morphogenetic protein-4 in osteoblasts. Exp Ther Med. 2017;14(1):417-423.
[38] XI J, LI Q, LUO X, et al. Epigallocatechin‑ 3‑gallate protects against secondary osteoporosis in a mouse model via the Wnt/beta‑catenin signaling pathway. Mol Med Rep. 2018;18(5):4555-4562.
[39] LIN SY, KANG L, WANG CZ, et al. (-)-Epigallocatechin-3-Gallate (EGCG) Enhances Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells. Molecules. 2018;23(12):3221.
[40] LIN SY, KANG L, CHEN JC, et al. (-)-Epigallocatechin-3-gallate (EGCG) enhances healing of femoral bone defect . Phytomedicine. 2019;55:165-171.
[41] VERMA NK, KAR AK, SINGH A, et al. Control Release of Adenosine Potentiate Osteogenic Differentiation within a Bone Integrative EGCG-g-NOCC/Collagen Composite Scaffold toward Guided Bone Regeneration in a Critical-Sized Calvarial Defect. Biomacromolecules. 2021;22(7):3069-3083.
[42] ZHANG X, HE J, QIAO L, et al. 3D printed PCLA scaffold with nano-hydroxyapatite coating doped green tea EGCG promotes bone growth and inhibits multidrug-resistant bacteria colonization. Cell Prolif. 2022;55(10):e13289.
[43] YAO D, GUO J, QIN T, et al. Effect of Alleviating Fibrosis with EGCG-Modified Bone Graft in Murine Model Depended on Less Accumulation of Inflammatory Macrophage. Biomed Res Int. 2023;2023:9466110.
[44] MING P, LI B, LI Q, et al. Multifunctional sericin-based biomineralized nanoplatforms with immunomodulatory and angio/osteo-genic activity for accelerated bone regeneration in periodontitis . Biomaterials. 2025;314:122885.
[45] NAKANISHI T, MUKAI K, YUMOTO H, et al. Anti-inflammatory effect of catechin on cultured human dental pulp cells affected by bacteria-derived factors. Eur J Oral Sci. 2010;118(2):145-150.
[46] LUO P, AN Y, HE J, et al. Icaritin with autophagy/mitophagy inhibitors synergistically enhances anticancer efficacy and apoptotic effects through PINK1/Parkin-mediated mitophagy in hepatocellular carcinoma. Cancer Lett. 2024;587:216621.
[47] QIAN X, ZHANG J, GU Z, et al. Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy. Biomaterials. 2019;211:1-13.
[48] GLORIEUX C, LIU S, TRACHOOTHAM D, et al.
Targeting ROS in cancer: rationale and strategies. Nat Rev Drug Discov. 2024;23(8): 583-606.
[49] CHEN Y, LI H, LIU N, et al. Multi-mechanism antitumor/antibacterial effects of Cu-EGCG self-assembling nanocomposite in tumor nanotherapy and drug-resistant bacterial wound infections. J Colloid Interface Sci. 2024;671:751-769.
[50] ANDRES C, LASTRA J, JUAN CA, et al. Chemical Insights into Oxidative and Nitrative Modifications of DNA. Int J Mol Sci. 2023;24(20):15240.
[51] NARAYANAN S, PAVITHRAN M, VISWANATH A, et al. Sequentially releasing dual-drug-loaded PLGA-casein core/shell nanomedicine: design, synthesis, biocompatibility and pharmacokinetics . Acta Biomater. 2014;10(5):2112-2124.
[52] STEARNS ME, WANG M. Synergistic Effects of the Green Tea Extract Epigallocatechin-3-gallate and Taxane in Eradication of Malignant Human Prostate Tumors. Transl Oncol. 2011;4(3):147-156.
[53] MIN KJ, KWON TK. Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate. Integr Med Res. 2014;3(1):16-24.
[54] WANG L, LI P, FENG K. EGCG adjuvant chemotherapy: Current status and future perspectives . Eur J Med Chem. 2023;250: 115197.
[55] LI H, KRSTIN S, WINK M. Modulation of multidrug resistant in cancer cells by EGCG, tannic acid and curcumin . Phytomedicine. 2018;50:213-222.
[56] LI X, HOU Y, HAN G, et al. S100A4/NF-kappaB axis mediates the anticancer effect of epigallocatechin-3-gallate in platinum-resistant ovarian cancer. iScience. 2024;27(2):108885.
[57] PISTOLLATO F, CALDERON IR, RUIZ R, et al.
The use of natural compounds for the targeting and chemoprevention of ovarian cancer. Cancer Lett. 2017;411:191-200.
[58] LAMBERT JD, ELIAS RJ. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys. 2010;501(1):65-72.
[59] LIU C, VAN MIL J, NOORLANDER A, et al. Use of Physiologically Based Kinetic Modeling-Based Reverse Dosimetry to Predict In Vivo Nrf2 Activation by EGCG and Its Colonic Metabolites in Humans . J Agric Food Chem. 2022;70(43):14015-14031.
[60] KIM HS, QUON MJ, KIM JA. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol. 2014;2:187-195.
[61] TAO L, PARK JY, LAMBERT JD. Differential prooxidative effects of the green tea polyphenol, (-)-epigallocatechin-3-gallate, in normal and oral cancer cells are related to differences in sirtuin 3 signaling. Mol Nutr Food Res. 2015;59(2):203-211.
[62] LI K, WU L, WANG H, et al. Apoptosis and cuproptosis Co-activated Copper-based metal-organic frameworks for cancer therapy. J Nanobiotechnology. 2024; 22(1):546.
[63] LIU F, MAJEED H, ANTONIOU J, et al. pH and temperature stability of (-)-epigallocatechin-3-gallate-beta-cyclodextrin inclusion complex-loaded chitosan nanoparticles. Carbohydr Polym. 2016;149:340-347.
[64] SAHADEVAN R, SINGH S, BINOY A, et al. Chemico-biological aspects of (-)-epigallocatechin-3-gallate (EGCG) to improve its stability, bioavailability and membrane permeability: Current status and future prospects . Crit Rev Food Sci Nutr. 2023;63(30):10382-10411.
[65] BARZIN M, BAGHERI AM, OHADI M, et al. Application of plant-derived exosome-like nanoparticles in drug delivery . Pharm Dev Technol. 2023;28(5):383-402.
[66] RAKOTONDRABE TF, FAN MX, MUEMA FW, et al. Modulating Inflammation-Mediated Diseases via Natural Phenolic Compounds Loaded in Nanocarrier Systems. Pharmaceutics. 2023;15(2):699.
[67] YANG QQ, WEI XL, FANG YP, et al. Nanochemoprevention with therapeutic benefits: An updated review focused on epigallocatechin gallate delivery. Crit Rev Food Sci Nutr. 2020;60(8):1243-1264.
[68] GRANJA A, FRIAS I, NEVES AR, et al. Therapeutic Potential of Epigallocatechin Gallate Nanodelivery Systems. Biomed Res Int. 2017;2017:5813793.
[69] ZHANG X, XIONG S, SATHIYASEELAN A, et al. Recent advances in photocatalytic nanomaterials for environmental remediation: Strategies, mechanisms, and future directions. Chemosphere. 2024; 364:143142.
[70] GAO W, FAN X, BI Y, et al. Preparation of NIR-Responsive Gold Nanocages as Efficient Carrier for Controlling Release of EGCG in Anticancer Application. Front Chem. 2022;10:926002.
[71] LI J, JIANG X, SHANG L, et al. L-EGCG-Mn nanoparticles as a pH-sensitive MRI contrast agent. Drug Deliv. 2021;28(1):134-143.
[72] CHI T, SANG T, WANG Y, et al. Cleavage and Noncleavage Chemistry in Reactive Oxygen Species (ROS)-Responsive Materials for Smart Drug Delivery. Bioconjug Chem. 2024;35(1):1-21.
[73] BI D, QU F, XIAO W, et al. Reactive Oxygen Species-Responsive Gel-Based Microneedle Patches for Prolonged and Intelligent Psoriasis Management. ACS Nano. 2023; 17(5):4346-4357.
[74] ZHANG J, CUI H, QIU J, et al. Stability of glycosylated complexes loaded with Epigallocatechin 3-gallate (EGCG). Food Chem. 2023;410:135364.
[75] PENG X, MCCLEMENTS DJ, LIU X, et al. EGCG-based nanoparticles: synthesis, properties, and applications. Crit Rev Food Sci Nutr. 2025;65(12):2177-2198.
[76] SONG H, WANG Q, HE A, et al. Antioxidant activity, storage stability and in vitro release of epigallocatechin-3-gallate (EGCG) encapsulated in hordein nanoparticles . Food Chem. 2022;388:132903.
[77] SHEN M, YOU Y, XU C, et al. Epigallocatechin-3-Gallate attenuates lipopolysacharide-induced pneumonia via modification of inflammation, oxidative stress, apoptosis, and autophagy . BMC Complement Med Ther. 2024;24(1):147.
[78] LIU S, CAO Y, MA L, Et al. Oral antimicrobial peptide-EGCG nanomedicines for synergistic treatment of ulcerative colitis . J Control Release. 2022;347:544-560.
[79] KUMAZOE M, FUJIMURA Y, YOSHITOMI R, et al. Fustin, a Flavanonol, Synergically Potentiates the Anticancer Effect of Green Tea Catechin Epigallocatechin-3-O-Gallate with Activation of the eNOS/cGMP Axis . J Agric Food Chem. 2022;70(11):3458-3466. |