[1] ROGER VL, GO AS, LLOYD-JONES DM, et al. Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18-e209.
[2] GS C. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):459-480.
[3] De LUCA R, SCIARRONE F, MANULI A, et al. Can emerging technologies be effective in improving alexithymia due to brain lesion? Medicine (Baltimore). 2020;99(38):e22313.
[4] BENJAMIN EJ, MUNTNER P, ALONSO A, et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139(10):e56-e528.
[5] 蒋勤, 张毅, 谢志荣. 脑机接口在康复医疗领域的应用研究综述[J]. 重庆邮电大学学报(自然科学版),2021,33(4):562-570.
[6] FU J, CHEN S, JIA J. Sensorimotor Rhythm-Based Brain-Computer Interfaces for Motor Tasks Used in Hand Upper Extremity Rehabilitation after Stroke: A Systematic Review. Brain Sci. 2022;13(1):56.
[7] KAWAKAMI M, FUJIWARA T, USHIBA J, et al. A new therapeutic application of brain-machine interface (BMI) training followed by hybrid assistive neuromuscular dynamic stimulation (HANDS) therapy for patients with severe hemiparetic stroke: A proof of concept study. Restor Neurol Neurosci. 2016;34(5):789-797.
[8] 金伟. 《编辑学报》1995—2004年载文作者群统计分析[J]. 编辑学报,2006(1): 78-80.
[9] 丁学东. 文献计量学基础[M]. 北京:北京大学出版社,1993.
[10] 宫会玲. 基于文献计量方法的期刊核心作者群分析:以《华南地震》为例[J]. 地震地磁观测与研究,2024,45(2):177-182.
[11] 赵丽红. 基于高被引论文的情报学研究现状分析[J]. 现代情报,2008,28(12):157-160.
[12] MILLAN JD, RUPP R, MULLER-PUTZ GR, et al. Combining Brain-Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges. Front Neurosci. 2010;4:161.
[13] CHAUDHARY U, BIRBAUMER N, RAMOS-MURGUIALDAY A. Brain-computer interfaces for communication and rehabilitation. Nat Rev Neurol. 2016;12(9):513-525.
[14] 王仲朋, 陈龙, 何峰, 等. 面向康复与辅助应用的脑-机接口趋势与展望[J]. 仪器仪表学报,2017,38(6):1307-1318.
[15] 张桃, 杨帮华, 段凯文, 等. 基于运动想象脑机接口的手功能康复系统设计[J]. 中国康复理论与实践,2017,23(1):4-9.
[16] RAMOS-MURGUIALDAY A, BROETZ D, REA M, et al. Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol. 2013;74(1):100-108.
[17] DALY JJ, WOLPAW JR. Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 2008;7(11):1032-1043.
[18] 陈树耿, 束小康, 贾杰. 基于闭环脑机接口的脑卒中患者的手功能康复研究[J]. 中国康复医学杂志,2016,31(11):1189-1194.
[19] 刘小燮, 毕胜, 高小榕, 等. 基于运动想象的脑机交互康复训练新技术对脑卒中大脑可塑性影响[J]. 中国康复医学杂志, 2013,28(2):97-102.
[20] BUCH E, WEBER C, COHEN LG, et al. Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke. 2008;39(3):910-917.
[21] 陈树耿, 贾杰. 脑机接口在脑卒中手功能康复中的应用进展[J]. 中国康复理论与实践,2017,23(1):23-26.
[22] 陈超美, 李杰. Cite Space科技文本挖掘及可视化[M]. 北京:首都经贸大学出版社,2016.
[23] PICHIORRI F, MORONE G, PETTI M, et al. Brain-computer interface boosts motor imagery practice during stroke recovery. Ann Neurol. 2015;77(5):851-865.
[24] ANG KK, GUAN C, PHUA KS, et al. Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke. Front Neuroeng. 2014;7:30.
[25] ANG KK, CHUA KS, PHUA KS, et al. A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke. Clin EEG Neurosci. 2015;46(4):310-320.
[26] BIASIUCCI A, LEEB R, ITURRATE I, et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat Commun. 2018;9(1):2421.
[27] CERVERA MA, SOEKADAR SR, USHIBA J, et al. Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann Clin Transl Neurol. 2018;5(5):651-663.
[28] VOURVOPOULOS A, JORGE C, ABREU R, et al. Efficacy and Brain Imaging Correlates of an Immersive Motor Imagery BCI-Driven VR System for Upper Limb Motor Rehabilitation: A Clinical Case Report. Front Hum Neurosci. 2019;13:244.
[29] 杨亮宇. 面向上肢康复的VR-BCI训练系统关键技术研究[D]. 常州:常州大学,2023.
[30] 胡景钊, 刘阳, 贾巧妹, 等. 基于镜像神经元理论的便携式MI-VR BCI康复系统设计[J]. 西北大学学报(自然科学版), 2021,51(4):567-576.
[31] 徐硕, 贾杰. “中枢-外周-中枢”闭环康复:脑卒中后手功能康复新理念的临床应用进展[J]. 中国康复医学杂志, 2024,39(10):1537-1541.
[32] 初建松, 曹曼, 赵林林, 等. 基于CiteSpace的EwE模型文献计量学与可视化分析[J]. 应用生态学报,2021,32(2): 763-770.
[33] 阎亦舒, 王莉莉, 张海湃, 等. 针刺干预自主神经的CiteSpace可视化分析[J]. 针灸临床杂志,2025,41(2):58-69.
[34] AGHAEI AS, MAHANTA MS, PLATANIOTIS KN. Separable Common Spatio-Spectral Patterns for Motor Imagery BCI Systems. IEEE Trans Biomed Eng. 2016;63(1):15-29.
[35] WOLPAW JR, BIRBAUMER N, HEETDERKS WJ, et al. Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng. 2000;8(2):164-173.
[36] PFURTSCHELLER G, NEUPER C. Motor imagery and direct brain-computer communication. Proc IEEE Inst Electr Electron Eng. 2001;82(7):1123-1134.
[37] VAN DOKKUM LEH, WARD T, LAFFONT I. Brain computer interfaces for neurorehabilitation - its current status as a rehabilitation strategy post-stroke. Ann Phys Rehabil Med. 2015;58(1):3-8.
[38] PICHIORRI F, MORONE G, PETTI M, et al. Brain-Computer Interface Boosts Motor Imagery Practice during Stroke Recovery. Ann Neurol. 2015;77(5):851-865.
[39] ANG KK, GUAN C. Brain-Computer Interface in Stroke Rehabilitation. J Comp Sci Eng. 2013;7(2):139-146.
[40] ANG KK, GUAN C, CHUA KSG, et al. A Large Clinical Study on the Ability of Stroke Patients to Use an EEG-Based Motor Imagery Brain-Computer Interface. Clin EEG Neurosci. 2011;42(4):253-258.
[41] CHO W, HEILINGER A, ORTNER R, et al. Motor rehabilitation for hemiparetic stroke patients using a brain-computer interface method. 2018 IEEE International Conference on Systems, Man, and Cybernetics. 2018: 2577-1655.
[42] 罗浩月, 李秋芳. 基于CiteSpace的疼痛灾难化相关研究热点的可视化分析[J]. 军事护理,2023,40(7):77-81.
[43] 陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015,33(2):242-253.
[44] BIASIUCCI A, LEEB R, ITURRATE I, et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat Commun. 2018;9(1):2421.
[45] SCHWEMMER MA, SKOMROCK ND, SEDERBERG PB, et al. Meeting brain-computer interface user performance expectations using a deep neural network decoding framework. Nat Med. 2018; 24(11):1669-1676.
[46] PANDARINATH C, NUYUJUKIAN P, BLABE CH, et al. High performance communication by people with paralysis using an intracortical brain-computer interface. Elife. 2017;6: e18554.
[47] XIE X, YU ZL, LU H, et al. Motor Imagery Classification Based on Bilinear Sub-Manifold Learning of Symmetric Positive-Definite Matrices. IEEE Trans Neural Syst Rehabil Eng. 2017;25(6):504-516.
[48] MULLER-PUTZ GR, SCHERER R, PFURTSCHELLER G, et al. Temporal coding of brain patterns for direct limb control in humans. Front Neurosci. 2010;4:34.
[49] VARBU K, MUHAMMAD N, MUHAMMAD Y. Past, Present, and Future of EEG-Based BCI Applications. Sensors (Basel). 2022; 22(9):3331.
[50] ALAWIEH A, ZHAO J, FENG W. Factors affecting post-stroke motor recovery: Implications on neurotherapy after brain injury. Behav Brain Res. 2018;340:94-101.
[51] ANG KK, GUAN C, CHUA KSG, et al. A Large Clinical Study on the Ability of Stroke Patients to Use an EEG-Based Motor Imagery Brain-Computer Interface. Clin EEG Neurosci. 2011;42(4):253-258.
[52] VIDAL JJ. Toward direct brain-computer communication. Annu Rev Biophys Bioeng. 1973;2:157-180.
[53] van ERP JBF, LOTTE F, TANGERMANN M. Brain-Computer Interfaces: Beyond Medical Applications. Computer (Long Beach Calif). 2012;45(4):26-34.
[54] PFURTSCHELLER G, MUELLER-PUTZ GR, SCHERER R, et al. Rehabilitation with Brain-Computer Interface Systems. Computer (Long Beach Calif). 2008;41(10):58-65.
[55] KWAK N, MUELLER K, LEE S. A lower limb exoskeleton control system based on steady state visual evoked potentials. J Neural Eng. 2015;12(5):056009.
[56] 陈翰, 刘翔宇, 程佳君, 等. 植入式脑机接口电极的频率优化(英文)[J]. 东南大学学报(英文版),2025,41(3):366-374.
[57] CHUNG E, KIM J, PARK D, et al. Effects of brain-computer interface-based functional electrical stimulation on brain activation in stroke patients: a pilot randomized controlled trial. J Phys Ther Sci. 2015;27(3):559-562.
[58] ZHANG X, MA Z, ZHENG H, et al. The combination of brain-computer interfaces and artificial intelligence: applications and challenges. Ann Transl Med. 2020;8(11):712.
[59] CRAIK A, HE Y, CONTRERAS-VIDAL JL. Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng. 2019;16(3):031001.
[60] ZHANG X, YAO L, WANG X, et al. A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. J Neural Eng. 2021;18(3). doi: 10.1088/1741-2552/abc902.
[61] CHAI X, CAO T, HE Q, et al. Brain-computer interface digital prescription for neurological disorders. CNS Neurosci Ther. 2024;30(2): e14615.
|