中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (24): 5179-5186.doi: 10.12307/2025.736
• 组织构建综述 tissue construction review • 上一篇 下一篇
张兴宇,吴 斗,赵恩哲,宋旭彬,张晓仑
收稿日期:
2024-09-21
接受日期:
2024-10-31
出版日期:
2025-08-28
发布日期:
2025-01-25
通讯作者:
吴斗,博士,主任医师,山西医科大学第三医院 (山西白求恩医院,山西医学科学院,同济山西医院),山西省太原市 030032
作者简介:
张兴宇,男,1997年生,山西省忻州市人,汉族,硕士,主要从事创伤骨科、骨质疏松等方面的研究。
基金资助:
Zhang Xingyu, Wu Dou, Zhao Enzhe, Song Xubin, Zhang Xiaolun
Received:
2024-09-21
Accepted:
2024-10-31
Online:
2025-08-28
Published:
2025-01-25
Contact:
Wu Dou, PhD, Chief physician, Third Hospital of Shanxi Medical University,Shanxi Bethune Hospital,Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital,Taiyuan030032,Shanxi Province,China
About author:
Zhang Xingyu, MS, Third Hospital of Shanxi Medical University,Shanxi Bethune Hospital,Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital,Taiyuan030032,Shanxi Province,China
Supported by:
摘要:
文题释义:
肌骨交互:肌肉和骨骼通过机械、生化、干细胞作用相互影响,达到共调控的平衡状态。
肌骨退行性疾病及损伤:肌骨退行性疾病主要包括骨质疏松症、肌少症、肌少-骨质疏松症,肌肉骨骼损伤主要包括肌肉挫伤、肌肉撕裂、骨折、脆性骨折等。
背景:骨骼与肌肉退行性病变引发的多种疾病是老年人身体功能和运动能力下降、脆性骨折等不良预后的重要原因,严重影响老年人的身体健康和生活质量。
目的:综述肌骨交互作用机制及相关疾病病因、预防、治疗的研究进展。
方法:检索CNKI、万方和PubMed 数据库中2014-2024年发表的相关文献,中文检索词为“肌骨交互,肌肉骨骼系统,组织通讯,肌因子,骨因子,肌少-骨质疏松症,肌少症,骨质疏松症,骨再生,成纤维脂肪祖细胞”,英文检索词为“muscle-bone crosstalk,musculoskeletal system,inter-tissue communication,Myokines,Osteokines,Osteosarcopenia,Sarcopenia,Osteoporosis,Bone Regeneration,fibro-adipogenic progenitors”。通过阅读文章剔除研究内容与文章主题关系不大、侧重点不突出、内容观点陈旧的文献,最终纳入94篇文献进行归纳总结。
结果与结论:肌肉与骨骼的机械性交互、分泌因子交互和干细胞交互对肌骨系统的代谢及再生调控意义重大。针对肌因子(肌生成抑制素、鸢尾素等)和骨因子(核因子κB受体活化因子配体、硬化蛋白等)生化信号的系统干预可以改善骨骼肌和骨的质量和功能,对骨折愈合同样有积极效果。近年来发现肌骨系统中相关干细胞可进行交互作用,尤以成纤维脂肪祖细胞等肌祖细胞的活化对骨的生长、修复和再生影响显著。针对肌骨交互机制的研究可以对相关疾病的病因、预防、治疗提供思路,然而临床还未有对肌骨共病行之有效的治疗方法,大部分研究停留在细胞及动物实验阶段,因此未来还需要进行大量研究,逐步由实验向临床迈进,开发更具针对性的疗法及药物。
中图分类号:
张兴宇, 吴 斗, 赵恩哲, 宋旭彬, 张晓仑. 肌骨交互机制视域下肌骨退行性疾病及损伤的治疗与修复[J]. 中国组织工程研究, 2025, 29(24): 5179-5186.
Zhang Xingyu, Wu Dou, Zhao Enzhe, Song Xubin, Zhang Xiaolun. Treatment and repair of musculoskeletal degenerative diseases and injuries from the perspective of muscle-bone crosstalk mechanism[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(24): 5179-5186.
[1] LOMBARDI G, ZIEMANN E, BANFI G. Physical activity and bone health: what is the role of immune system? A narrative review of the third way. Front Endocrinol. 2019;10:60. [2] GOMARASCA M, BANFI G, LOMBARDI G. Myokines: The endocrine coupling of skeletal muscle and bone. Adv Clin Chem. 2020;94:155-218. [3] KIRK B, FEEHAN J, LOMBARDI G, et al. Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr Osteoporos Rep. 2020;18(4):388-400. [4] STEPPE L, MEGAFU M, TSCHAFFON-MÜLLER MEA, et al. Fracture healing research: Recent insights. Bone Rep. 2023;19:101686. [5] DING P, GAO C, GAO Y, et al. Osteocytes regulate senescence of bone and bone marrow. Elife. 2022;11:e81480. [6] KUBAT GB, BOUHAMIDA E, ULGER O, et al. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion. 2023;72:33-58. [7] WANG Z. Aging and Aging-Related Diseases: Mechanisms and Interventions. Adv Exp Med Biol. 2018. doi:10.1007/978-981-13-1117-8. [8] XIE WQ, HE M, YU DJ, et al. Correlation study between bone metabolic markers, bone mineral density, and sarcopenia. J Endocrinol Invest. 2024;47(6):1559-1572. [9] GIELEN E, DUPONT J, DEJAEGER M, et al. Sarcopenia, osteoporosis and frailty. Metabolism. 2023;145:155638. [10] ZHANG N, CHIM YN, WANG J, et al. Impaired fracture healing in sarco‐osteoporotic mice can be rescued by vibration treatment through myostatin suppression. J Orthop Res. 2020;38(2):277-287. [11] ZHOU J, YI J, BONEWALD L. Muscle-bone crosstalk in amyotrophic lateral sclerosis. Curr Osteoporos Rep. 2015;13:274-279. [12] SHAO X, FU X, YANG J, et al. The asymmetrical ESR1 signaling in muscle progenitor cells determines the progression of adolescent idiopathic scoliosis. Cell Discov. 2023;9(1):44. [13] WOLFF J. The Classic: on the Inner Architecture of Bones and its Importance for Bone Growth:(Ueber die innere Architectur der Knochen und ihre Bedeutung für die Frage vom Knochenwachsthum). Clin Orthop Relat Res. 2010;468(4):1056-1065. [14] MOHR T, ANDERSEN JL, BIERING-SØRENSEN F, et al. Long term adaptation to electrically induced cycle training in severe spinal cord injured individuals. Spinal Cord. 1997;35(1):1-16. [15] FROST HM. The Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs. J Bone Miner Metab. 2000;18:305-316. [16] PEDERSEN BK, ÅKERSTRÖM TC, NIELSEN AR, et al. Role of myokines in exercise and metabolism. J Appl Physiol (1985). 2007;103(3):1093-1098. [17] BRAY N. Targeting myostatin for direct joint defence. Nat Rev Drug Discov. 2015;14(10):677-677. [18] TAGLIAFERRI C, WITTRANT Y, DAVICCO MJ, et al. Muscle and bone, two interconnected tissues. Ageing Res Rev. 2015;21:55-70. [19] ABOU-KHALIL R, YANG F, LIEU S, et al. Role of muscle stem cells during skeletal regeneration. Stem Cells. 2015;33(5):1501-1511. [20] KIM H, WRANN CD, JEDRYCHOWSKI M, et al. Irisin mediates effects on bone and fat via αV integrin receptors. Cell. 2018;175(7):1756-1768.e17. [21] JULIEN A, KANAGALINGAM A, MARTÍNEZ-SARRÀ E, et al. Direct contribution of skeletal muscle mesenchymal progenitors to bone repair. Nat Commun. 2021; 12(1):2860. [22] MAO Y, YAN, YANG J, et al. Muscle-bone cross-talk through the FNIP1-TFEB-IGF2 axis is associated with bone metabolism in human and mouse. Sci Transl Med. 2024;16(750):eadk9811. [23] FRONTERA WR, OCHALA J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int. 2015;96:183-195. [24] JAYASINGHE SAL, SCHEIDT RA, SAINBURG RL. Neural control of stopping and stabilizing the arm. Front Integr Neurosci. 2022;16:835852.
[25] SYLVESTER AD, LAUTZENHEISER SG, KRAMER PA. A review of musculoskeletal modelling of human locomotion. Interface Focus. 2021;11(5):20200060. [26] INTEMANN J, DE GORTER DJJ, NAYLOR AJ, et al. Importance of osteocyte-mediated regulation of bone remodelling in inflammatory bone disease. Swiss Med Wkly. 2020;150(0506):w20187-w20187. [27] GOODMAN CA, HORNBERGER TA, ROBLING AG. Bone and skeletal muscle: key players in mechanotransduction and potential overlapping mechanisms. Bone. 2015;80:24-36. [28] MURPHY P, ROLFE RA. Building a Co-ordinated Musculoskeletal System: The Plasticity of the Developing Skeleton in Response to Muscle Contractions//Roles of Skeletal Muscle in Organ Development: Prenatal Interdependence among Cells, Tissues, and Organs. Cham: Springer International Publishing, 2023:81-110. [29] LEEK CC, SOULAS JM, BHATTACHARYA I, et al. Deletion of Fibroblast growth factor 9 globally and in skeletal muscle results in enlarged tuberosities at sites of deltoid tendon attachments. Dev Dyn. 2021; 250(12):1778-1795. [30] WANG L, YOU X, LOTINUN S, et al. Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk. Nat Commun. 2020;11(1):282. [31] JACKOWSKI SA, LANOVAZ JL, VAN OORT C, et al. Does lean tissue mass accrual during adolescence influence bone structural strength at the proximal femur in young adulthood? Osteoporos Int. 2014;25:1297-1304. [32] LAU P, VICO L, RITTWEGER J. Dissociation of bone resorption and formation in spaceflight and simulated microgravity: Potential role of myokines and osteokines? Biomedicines. 2022;10(2):342. [33] MAAK S, NORHEIM F, DREVON CA, et al. Progress and challenges in the biology of FNDC5 and irisin. Endocr Rev. 2021;42(4):436-456. [34] LIU S, CUI F, NING K, et al. Role of irisin in physiology and pathology. Front Endocrinol. 2022;13:962968. [35] ROOMI AB, NORI W, HAMED RM. Lower serum irisin levels are associated with increased osteoporosis and oxidative stress in postmenopausal. Rep Biochem Mol Biol. 2021;10(1):13. [36] ALSAAWI TA, ALDISI D, ABULMEATY MMA, et al. Screening for sarcopenia among elderly arab females: influence of body composition, lifestyle, irisin, and vitamin D. Nutrients. 2022;14(9): 1855. [37] QIN Y, PENG Y, ZHAO W, et al. Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication. J Biol Chem. 2017;292(26):11021-11033. [38] HE C, HE W, HOU J, et al. Bone and muscle crosstalk in aging. Front Cell Dev Biol. 2020;8:585644. [39] KURIYAMA N, OZAKI E, KOYAMA T, et al. Evaluation of myostatin as a possible regulator and marker of skeletal muscle-cortical bone interaction in adults. J Bone Miner Metab. 2021;39:404-415. [40] BONEWALD L. Use it or lose it to age: A review of bone and muscle communication. Bone. 2019;120:212-218. [41] PRIDEAUX M, SMARGIASSI A, PENG G, et al. L BAIBA Synergizes with Sub Optimal Mechanical Loading to Promote New Bone Formation. JBMR Plus. 2023;7(6):e10746. [42] NOVAIS A, CHATZOPOULOU E, CHAUSSAIN C, et al. The potential of FGF-2 in craniofacial bone tissue engineering: a review. Cells. 2021;10(4):932. [43] MAZZIOTTI G, LANIA AG, CANALIS E. Skeletal disorders associated with the growth hormone–insulin-like growth factor 1 axis. Nat Rev Endocrinol. 2022;18(6):353-365. [44] ADHIKARY S, CHOUDHARY D, TRIPATHI AK, et al. FGF-2 targets sclerostin in bone and myostatin in skeletal muscle to mitigate the deleterious effects of glucocorticoid on musculoskeletal degradation. Life Sci. 2019;229:261-276. [45] CHOWDHURY S, SCHULZ L, PALMISANO B, et al. Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts. J Clin Invest. 2020;130(6): 2888-2902. [46] MARCADET L, BOUREDJI Z, ARGAW A, et al. The roles of RANK/RANKL/OPG in cardiac, skeletal, and smooth muscles in health and disease. Front Cell Dev Biol. 2022;10:903657. [47] DUFRESNE SS, DUMONT NA, BOULANGER-PIETTE A, et al. Muscle RANK is a key regulator of Ca2+ storage, SERCA activity, and function of fast-twitch skeletal muscles. Am J Physiol Cell Physiol. 2016;310(8): C663-C672. [48] WANG H, LI J, XU Z, et al. Undercarboxylated osteocalcin inhibits the early differentiation of osteoclast mediated by Gprc6a. PeerJ. 2021;9: e10898. [49] PARK D, KIM DY, BYUN MR, et al. Undercarboxylated, But Not Carboxylated, Osteocalcin Suppresses TNF-α-Induced Inflammatory Signaling Pathway in Myoblasts. J Endocr Soc. 2022;6(8):bvac084. [50] MORETTI A, IOLASCON G. Sclerostin: clinical insights in muscle–bone crosstalk. J Int Med Res. 2023;51(8):03000605231193293. [51] RECKER RR, BENSON CT, MATSUMOTO T, et al. A randomized, double‐blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. J Bone Miner Res. 2015;30(2):216-224. [52] KIM SP, FREY JL, LI Z, et al. Sclerostin influences body composition by regulating catabolic and anabolic metabolism in adipocytes. Proc Natl Acad Sci U S A. 2017;114(52):E11238-E11247. [53] JEFFERY EC, MANN TLA, POOL JA, et al. Bone marrow and periosteal skeletal stem/progenitor cells make distinct contributions to bone maintenance and repair. Cell Stem Cell. 2022;29(11):1547-1561.e6. [54] CHAN CKF, GULATI GS, SINHA R, et al. Identification of the human skeletal stem cell. Cell. 2018;175(1):43-56.e21. [55] SEROWOKY MA, ARATA CE, CRUMP JG, et al. Skeletal stem cells: insights into maintaining and regenerating the skeleton. Development. 2020;147(5): dev179325. [56] GIULIANI G, ROSINA M, REGGIO A. Signaling pathways regulating the fate of fibro/adipogenic progenitors (FAPs) in skeletal muscle regeneration and disease. FEBS J. 2022;289(21):6484-6517. [57] PHILLIPS CL, JEONG Y. Osteogenesis imperfecta: Muscle-bone interactions when bi-directionally compromised. Curr Osteoporos Rep. 2018;16:478-489. [58] 董单,许超,万晴冬,等.肌少-骨质疏松症的研究进展[J].中华内分泌代谢杂志,2023,39(7):625-631. [59] LOCQUET M, BEAUDART C, BRUYÈRE O, et al. Bone health assessment in older people with or without muscle health impairment. Osteoporos Int. 2018;29:1057-1067. [60] BLOMQVIST M, NUOTIO M, SÄÄKSJÄRVI K, et al. Osteosarcopenia in Finland: prevalence and associated factors. Arch Osteoporos. 2024;19(1):1-11. [61] SMEUNINX B, ELHASSAN YS, MANOLOPOULOS KN, et al. The effect of short‐term exercise prehabilitation on skeletal muscle protein synthesis and atrophy during bed rest in older men. J Cachexia Sarcopenia Muscle. 2021;12(1):52-69. [62] CHEN J, ZHOU R, FENG Y, et al. Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduct Target Ther. 2022;7(1):383. [63] SURESH KUMAR H, BARNETT EN, FOWLKES JL, et al. Biomechanical Stimulation of Muscle Constructs Influences Phenotype of Bone Constructs by Modulating Myokine Secretion. JBMR Plus. 2023;7(11):e10804. [64] GAO H, ZHAO Y, ZHAO L, et al. The Role of Oxidative Stress in Multiple Exercise-Regulated Bone Homeostasis. Aging Dis. 2023;14(5):1555. [65] KAWAGUCHI M, KAWAO N, MURATANI M, et al. Role of peripheral myelin protein 22 in chronic exercise‐induced interactions of muscle and bone in mice. J Cell Physiol. 2022;237(5):2492-2502. [66] LEVINGER I, SCOTT D, NICHOLSON GC, et al. Undercarboxylated osteocalcin, muscle strength and indices of bone health in older women. Bone. 2014;64:8-12. [67] PANA A, SOURTZI P, KALOKAIRINOU A, et al. Sarcopenia and polypharmacy among older adults: a scoping review of the literature. Arch Gerontol Geriatr. 2022;98:104520. [68] RODGERS BD, WARD CW. Myostatin/activin receptor ligands in muscle and the development status of attenuating drugs. Endocr Rev. 2022;43(2):329-365. [69] RUPP T, VON VOPELIUS E, STRAHL A, et al. Beneficial effects of denosumab on muscle performance in patients with low BMD: a retrospective, propensity score-matched study. Osteoporos Int. 2022;33(10):2177-2184. [70] BASS JJ, KAZI AA, DEANE CS, et al. The mechanisms of skeletal muscle atrophy in response to transient knockdown of the vitamin D receptor in vivo. J Physiol. 2021;599(3):963-979. [71] ALTOWATI MA, SHEPHERD S, MCGROGAN P, et al. Effects of recombinant human growth hormone in children with Crohn’s disease on the muscle-bone unit: a preliminary study. Horm Res Paediatr. 2018;90(2):128-131. [72] ELAHMER NR, WONG SK, MOHAMED N, et al. Mechanistic Insights and Therapeutic Strategies in Osteoporosis: A Comprehensive Review. Biomedicines. 2024;12(8):1635. [73] BRENT MB, STOLTENBORG FE, BRÜEL A, et al. Teriparatide and abaloparatide have a similar effect on bone in mice. Front Endocrinol. 2021;12:628994. [74] ROMAGNOLI C, ZONEFRATI R, LUCATTELLI E, et al. In Vitro Effects of PTH (1-84) on Human Skeletal Muscle-Derived Satellite Cells. Biomedicines. 2023;11(4):1017. [75] LEUNG KS, LI CY, TSE YK, et al. Effects of 18-month low-magnitude high-frequency vibration on fall rate and fracture risks in 710 community elderly-a cluster-randomized controlled trial. Osteoporos Int. 2014;25:1785-1795. [76] COLAIANNI G, CUSCITO C, MONGELLI T, et al. The myokine irisin increases cortical bone mass. Proc Natl Acad Sci U S A. 2015;112(39):12157-12162. [77] COLAIANNI G, MONGELLI T, CUSCITO C, et al. Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice. Sci Rep. 2017;7(1):2811. [78] KAN T, HE Z, DU J, et al. Irisin promotes fracture healing by improving osteogenesis and angiogenesis. J Orthop Translat. 2022;37:37-45. [79] LI Z, TIAN Y, ZHANG L, et al. Type II collagen from squid cartilage mediated myogenic IGF-I and irisin to activate the Ihh/PThrp and Wnt/β-catenin pathways to promote fracture healing in mice. Food Funct. 2021;12(14):6502-6512. [80] LEE SJ, LEHAR A, MEIR JU, et al. Targeting myostatin/activin A protects against skeletal muscle and bone loss during spaceflight. Proc Natl Acad Sci U S A. 2020; 117(38):23942-23951. [81] ZHANG N, CHIM YN, WANG J, et al. Impaired fracture healing in sarco-osteoporotic mice can be rescued by vibration treatment through myostatin suppression. J Orthop Res. 2020;38(2):277-287. [82] BIALEK P, PARKINGTON J, LI X, et al. A myostatin and activin decoy receptor enhances bone formation in mice. Bone. 2014;60:162-171. [83] KITASE Y, VALLEJO JA, GUTHEIL W, et al. β-aminoisobutyric acid, l-BAIBA, is a muscle-derived osteocyte survival factor. Cell Rep. 2018;22(6): 1531-1544. [84] RAMLI FF, CHIN KY. A review of the potential application of osteocyte-related biomarkers, fibroblast growth factor-23, sclerostin, and dickkopf-1 in predicting osteoporosis and fractures. Diagnostics. 2020;10(3):145. [85] MAUREL DB, MATSUMOTO T, VALLEJO JA, et al. Characterization of a novel murine Sost ERT2 Cre model targeting osteocytes. Bone Res. 2019;7(1):6. [86] HAMOUDI D, BOUREDJI Z, MARCADET L, et al. Muscle weakness and selective muscle atrophy in osteoprotegerin-deficient mice. Hum Mol Genet. 2020;29(3): 483-494. [87] BOUREDJI Z, HAMOUDI D, MARCADET L, et al. Testing the efficacy of a human full-length OPG-Fc analog in a severe model of cardiotoxin-induced skeletal muscle injury and repair. Mol Ther Methods Clin Dev. 2021;21:559-573. [88] ONO T, HAYASHI M, SASAKI F, et al. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen. 2020;40:1-16. [89] JUBAN G, SACLIER M, YACOUB-YOUSSEF H, et al. AMPK activation regulates LTBP4-dependent TGF-β1 secretion by pro-inflammatory macrophages and controls fibrosis in Duchenne muscular dystrophy. Cell Rep. 2018;25(8):2163-2176.e6. [90] LEES-SHEPARD JB, YAMAMOTO M, BISWAS AA, et al. Activin-dependent signaling in fibro/adipogenic progenitors causes fibrodysplasia ossificans progressiva. Nat Commun. 2018;9(1):471. [91] FANG WH, VANGSNESS JR CT. Food and Drug Administration’s Position on Commonly Injected Biologic Materials in Orthopaedic Surgery. Am J Sports Med. 2021;49(12):3414-3421. [92] BENSALAH M, MURAINE L, BOULINGUIEZ A, et al. A negative feedback loop between fibroadipogenic progenitors and muscle fibres involving endothelin promotes human muscle fibrosis. J Cachexia Sarcopenia Muscle. 2022;13(3):1771-1784. [93] TAKAFUJI Y, TATSUMI K, KAWAO N, et al. MicroRNA-196a-5p in extracellular vesicles secreted from myoblasts suppresses osteoclast-like cell formation in mouse cells. Calcif Tissue Int. 2021;108:364-376. [94] MARUYAMA M, RHEE C, UTSUNOMIYA T, et al. Modulation of the inflammatory response and bone healing. Front Endocrinol (Lausanne). 2020;11:386. |
[1] | 陈伊娴, 陈 晨, 卢立恒, 汤锦鹏, 于晓巍. 雷公藤甲素治疗骨关节炎的网络药理学分析与实验验证[J]. 中国组织工程研究, 2026, 30(4): 805-815. |
[2] | 鄢成波, 罗秋池, 樊佳兵, 顾叶婷, 邓 倩, 张军梅. 2型糖尿病对大鼠正畸牙移动与张力侧骨微结构参数的影响[J]. 中国组织工程研究, 2026, 30(4): 824-831. |
[3] | 李广政, 李 威, 张博淳, 丁浩秦, 周忠起, 李 刚, 梁学振. 绝经后女性肌肉减少症预测模型:中国健康与养老全国追踪调查数据库信息分析[J]. 中国组织工程研究, 2026, 30(4): 849-857. |
[4] | 邹荣基, 喻芳芳, 王茂林, 贾卓鹏 . 雷公藤内酯酮抑制铁死亡改善大脑动脉闭塞/再灌注模型大鼠脑缺血再灌注损伤[J]. 中国组织工程研究, 2026, 30(4): 873-881. |
[5] | 陈小青, 卞路瑶, 陆星宇, 杨 涛, 李湘海. 心俞穴位埋线预处理改善急性心肌缺血模型大鼠的心功能[J]. 中国组织工程研究, 2026, 30(4): 882-891. |
[6] | 王明琦, 冯诗雅, 韩银河, 于朋鑫, 郭丽娜, 贾子萱, 王秀丽. 神经化肠黏膜组织工程模型的构建及体外评价[J]. 中国组织工程研究, 2026, 30(4): 892-900. |
[7] | 王 杰, 黄 芮, 张 也, 首朝曦, 姚 杰, 刘辰希, 廖 健. 益生菌在种植体周炎中的作用及机制[J]. 中国组织工程研究, 2026, 30(4): 901-907. |
[8] | 曹文琪, 冯秀芝, 赵 奕, 王智民, 陈怡然, 杨 潇, 任艳玲. 巨噬细胞极化对2型糖尿病性骨质疏松症成骨-成血管偶联的影响[J]. 中国组织工程研究, 2026, 30(4): 917-925. |
[9] | 杨 肖, 白月辉, 赵甜甜, 王东昊, 赵 琛, 袁 硕. 颞下颌关节骨关节炎软骨退变:机制及再生的挑战[J]. 中国组织工程研究, 2026, 30(4): 926-935. |
[10] | 余诗宇, 俞苏桐, 徐 杨, 镇祥燕, 韩凤选. 组织工程治疗策略在口腔黏膜下纤维化中的研究与应用进展[J]. 中国组织工程研究, 2026, 30(4): 936-948. |
[11] | 金智勇, 汪宇峰, 赵滨杰, 熊敏全, 严 力. 基于双侧肢体控制策略视角分析肢体间不对称对运动能力的影响[J]. 中国组织工程研究, 2026, 30(4): 949-963. |
[12] | 孙嘉禾, 史冀鹏, 朱天瑞, 权赫龙, 徐红旗. 运动对肌少症及其合并症老年人影响的Meta分析[J]. 中国组织工程研究, 2026, 30(4): 997-1007. |
[13] | 曾 浩, 孙鹏程, 柴 源, 黄有荣, 张 驰, 章晓云. 甲状腺功能和骨质疏松症的关联:欧洲人群全基因组数据分析[J]. 中国组织工程研究, 2026, 30(4): 1019-1027. |
[14] | 容向宾, 郑海波, 莫学燊, 侯 坤, 曾 平, . 血浆代谢物、免疫细胞与髋骨关节炎的因果推断:GWAS数据欧洲群体资料分析[J]. 中国组织工程研究, 2026, 30(4): 1028-1035. |
[15] | 何启旺, 陈 波, 梁复超, 康泽伟, 周 原, 季桉旭, 唐夏林, . 阿尔茨海默病和肌少症及体质量指数的关系:欧洲人群GWAS数据集分析[J]. 中国组织工程研究, 2026, 30(4): 1036-1046. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||