[1] LONTCHI-YIMAGOU E, SOBNGWI E, MATSHA TE, et al. Diabetes mellitus and inflammation. Curr Diab Rep. 2013;13(3):435-444.
[2] DE OLIVEIRA PGFP, BONFANTE EA, BERGAMO ETP, et al. Obesity/metabolic syndrome and diabetes mellitus on peri-implantitis. Trends Endocrinol Metab. 2020;31(8):596-610.
[3] GRAVES DT, DING Z, YANG Y. The impact of diabetes on periodontal diseases. Periodontol 2000. 2020;82(1):214-224.
[4] MONJE A, CATENA A, BORGNAKKE WS. Association between diabetes mellitus/hyperglycaemia and peri-implant diseases: Systematic review and meta-analysis. J Clin Periodontol. 2017;44(6):636-648.
[5] HAN X, MA J, TIAN A, et al. Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review. Colloids Surf B Biointerfaces. 2023;227:113339.
[6] 刘鹏,樊博,邹磊,等.钛基植入物抗菌/促成骨双功能表面改性策略研究进展[J].中国修复重建外科杂志,2023,37(10):1300-1313.
[7] ZHU L, LUO D, LIU Y. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int J Oral Sci. 2020;12(1):6.
[8] ZHAO R, CHEN S, YUAN B, et al. Healing of osteoporotic bone defects by micro-/nano-structured calcium phosphate bioceramics. Nanoscale. 2019;11(6):2721-2732.
[9] HAGHWERDI F, KHOZAEI RAVARI M, TAGHIYAR L, et al. Application of bone and cartilage extracellular matrices in articular cartilage regeneration. Biomed Mater. 2021;16(4). doi: 10.1088/1748-605X/ac094b.
[10] ZHANG T, GAO Y, CUI W, et al. Nanomaterials-based Cell Osteogenic Differentiation and Bone Regeneration. Curr Stem Cell Res Ther. 2021; 16(1):36-47.
[11] GONG T, XIE J, LIAO J, et al. Nanomaterials and bone regeneration. Bone Res. 2015;3:15029.
[12] FATTAHI R, MOHEBICHAMKHORAMI F, TAGHIPOUR N, et al. The effect of extracellular matrix remodeling on material-based strategies for bone regeneration: Review article. Tissue Cell. 2022;76:101748.
[13] DENG C, XU C, ZHOU Q, et al. Advances of nanotechnology in osteochondral regeneration. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(6):e1576.
[14] LEE KX, SHAMELI K, YEW YP, et al. Recent Developments in the Facile Bio-Synthesis of Gold Nanoparticles (AuNPs) and Their Biomedical Applications. Int J Nanomedicine. 2020;15:275-300.
[15] FAN J, CHENG Y, SUN M. Functionalized Gold Nanoparticles: Synthesis, Properties and Biomedical Applications. Chem Rec. 2020;20(12):1474-1504.
[16] QIAO M, TANG W, XU Z, et al. Gold nanoparticles: promising biomaterials for osteogenic/adipogenic regulation in bone repair. J Mater Chem B. 2023;11(11):2307-2333.
[17] LI J, LI JJ, ZHANG J, et al. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale. 2016;8(15):7992-8007.
[18] KANKALA RK, HAN YH, NA J, et al. Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles. Adv Mater. 2020;32(23):e1907035.
[19] KANKALA RK, HAN YH, XIA HY, et al. Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications. J Nanobiotechnology. 2022;20(1):126.
[20] SHI M, ZHOU Y, SHAO J, et al. Stimulation of osteogenesis and angiogenesis of hBMSCs by delivering Si ions and functional drug from mesoporous silica nanospheres. Acta Biomater. 2015;21:178-189.
[21] WANG J, ZHANG Y, LIU L, et al. Combined chemo/photothermal therapy based on mesoporous silica-Au core-shell nanoparticles for hepatocellular carcinoma treatment. Drug Dev Ind Pharm. 2019;45(9): 1487-1495.
[22] WANG H, CHEN F, HU A, et al. Harmine loaded Au@MSNs@PEG@Asp6 nano-composites for treatment of spinal metastasis from lung adenocarcinoma by targeting ANXA9 in vivo experiment. Transl Lung Cancer Res. 2023;12(5):1062-1077.
[23] ZHOU L, LIU G, WANG Y, et al. AuNP and ssDNA capped mesoporous silica nanoparticles for laser controlled drug release. RSC Adv. 2019; 9(60):34958-34962.
[24] ESKANDARI P, BIGDELI B, PORGHAM DARYASARI M, et al. Gold-capped mesoporous silica nanoparticles as an excellent enzyme-responsive nanocarrier for controlled doxorubicin delivery. J Drug Target. 2019; 27(10):1084-1093.
[25] ZHANG Y, KONG N, ZHANG Y, et al. Size-dependent Effects of Gold Nanoparticles on Osteogenic Differentiation of Human Periodontal Ligament Progenitor Cells. Theranostics. 2017;7(5):1214-1224.
[26] STICH T, ALAGBOSO F, KŘENEK T, et al. Implant-bone-interface: Reviewing the impact of titanium surface modifications on osteogenic processes in vitro and in vivo. Bioeng Transl Med. 2021;7(1):e10239.
[27] LUO M, ZHAO Z, YI J. Osteogenesis of bone marrow mesenchymal stem cell in hyperglycemia. Front Endocrinol (Lausanne). 2023;14:1150068.
[28] LI Y, TENG D, SHI X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ. 2020;369:m997.
[29] AJAMI E, BELL S, LIDDELL RS, et al. Early bone anchorage to micro- and nano-topographically complex implant surfaces in hyperglycemia. Acta Biomater. 2016;39:169-179.
[30] CHOUIRFA H, BOULOUSSA H, MIGONNEY V, et al. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019;83:37-54.
[31] MA L, LI G, LEI J, et al. Nanotopography Sequentially Mediates Human Mesenchymal Stem Cell-Derived Small Extracellular Vesicles for Enhancing Osteogenesis. ACS Nano. 2022;16(1):415-430.
[32] LI H, HUANG J, WANG Y, et al. Nanoscale Modification of Titanium Implants Improves Behaviors of Bone Mesenchymal Stem Cells and Osteogenesis In Vivo. Oxid Med Cell Longev. 2022;2022:2235335.
[33] HU P, GAO Q, ZHENG H, et al. The Role and Activation Mechanism of TAZ in Hierarchical Microgroove/Nanopore Topography-Mediated Regulation of Stem Cell Differentiation. Int J Nanomedicine. 2021;16: 1021-1036.
[34] MA L, KE W, LIAO Z, et al. Small extracellular vesicles with nanomorphology memory promote osteogenesis. Bioact Mater. 2022; 17:425-438.
[35] 张贤俊,赵锡江.钛螺钉表面含硅二氧化钛纳米管层的体内成骨性能[J].中国组织工程研究,2021,25(16):2461-2465.
[36] WANG K, JIN H, SONG Q, et al. Titanium dioxide nanotubes as drug carriers for infection control and osteogenesis of bone implants. Drug Deliv Transl Res. 2021;11(4):1456-1474.
[37] 张利兴,田昂,李锡,等.TiO2纳米管/羟基磷灰石载万古霉素涂层的释药性及生物毒性[J].中国组织工程研究,2021,25(10):1500-1506.
[38] CHOI SY, SONG MS, RYU PD, et al. Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/β-catenin signaling pathway. Int J Nanomedicine. 2015;10:4383-4392.
[39] RASOOL N, NEGI D, SINGH Y. Thiol-Functionalized, Antioxidant, and Osteogenic Mesoporous Silica Nanoparticles for Osteoporosis. ACS Biomater Sci Eng. 2023;9(6):3535-3545.
[40] REN B, WAN Y, LIU C, et al. Improved osseointegration of 3D printed Ti-6Al-4V implant with a hierarchical micro/nano surface topography: An in vitro and in vivo study. Mater Sci Eng C Mater Biol Appl. 2021; 118:111505.
[41] SUN X, LIN H, ZHANG C, et al. Improved Osseointegration of Selective Laser Melting Titanium Implants with Unique Dual Micro/Nano-Scale Surface Topography. Materials (Basel). 2022;15(21):7811.
[42] ZHOU J, XIONG S, LIU M, et al. Study on the influence of scaffold morphology and structure on osteogenic performance. Front Bioeng Biotechnol. 2023;11:1127162.
[43] SAKTHI DEVI R, GIRIGOSWAMI A, SIDDHARTH M, et al. Applications of Gold and Silver Nanoparticles in Theranostics. Appl Biochem Biotechnol. 2022;194(9):4187-4219.
|