[1] MIGLIORINI F, LA PADULA G, TORSIELLO E, et al. Strategies for large bone defect reconstruction after trauma, infections or tumour excision: a comprehensive review of the literature. Eur J Med Res. 2021;26(1): 118.
[2] KIM HD, AMIRTHALINGAM S, KIM SL, et al. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering. Adv Healthc Mater. 2017;6(23).doi:10.1002/adhm.20170061.
[3] BHARADWAZ A, JAYASURIYA AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2020;110: 110698.
[4] STRATTON S, SHELKE NB, HOSHINO K, et al. Bioactive polymeric scaffolds for tissue engineering. Bioact Mater. 2016;1(2):93-108.
[5] 王培.聚己内酯类生物高分子支架在组织工程领域的应用[J].中国组织工程研究,2021,25(34):5506-5510.
[6] MURUGAN S, PARCHA SR. Fabrication techniques involved in developing the composite scaffolds PCL/HA nanoparticles for bone tissue engineering applications. Mater Sci Mater Med. 2021;32(8):93.
[7] MALIKMAMMADOV E, TANIR TE, KIZILTAY A, et al. PCL and PCL-based materials in biomedical applications. J Biomater Sci Polym Ed. 2018;29(7-9):863-893.
[8] WU J, DU X, ZHANG D, et al. A nanodiamond chemotherapeutic folate receptor-targeting prodrug with triggerable drug release. Int J Pharm. 2023;630:122432.
[9] CHAUHAN S, JAIN N, NAGAICH U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents. J Pharm Anal. 2020;10(1):1-12.
[10] Rehman A, Houshyar S, Wang X. Nanodiamond in composite: Biomedical application. J Biomed Mater Res A. 2020;108(4):906-922.
[11] ZHANG Q, MOCHALIN VN, NEITZEL I, et al. Fluorescent PLLA-nanodiamond composites for bone tissue engineering . Biomaterials. 2011;32(1):87-94.
[12] MORIMUNE-MORIYA S, YADA S, KUROKI N, et al. Strong reinforcement effects of nanodiamond on mechanical and thermal properties of polyamide 66. Compos Sci Technol. 2020;199:108356.
[13] FOX K, RATWATTE R, BOOTH MA, et al. High Nanodiamond Content-PCL Composite for Tissue Engineering Scaffolds. Nanomaterials (Basel). 2020;10(5):948.
[14] 赵紫薇,高小武,曹文鑫,等.纳米金刚石表面功能化对其性能影响的研究进展[J].人工晶体学报,2022,51(5):852-864.
[15] HOUSHYAR S, KUMAR GS, RIFAI A, et al. Nanodiamond/poly-ε-caprolactone nanofibrous scaffold for wound management. Mater Sci Eng C Mater Biol Appl. 2019;100:378-387.
[16] KHAN M, HAMID A, TIEHU L, et al. Surface optimization of detonation nanodiamonds for the enhanced mechanical properties of polymer/nanodiamond composites. Diam Relat Mate. 2020;107:107897.
[17] BOGOJEVIC O, NYGAARD JV, WIKING L, et al. Designer phospholipids - structural retrieval, chemo-/bio- synthesis and isotopic labeling. Biotechnol Adv. 2022;60:108025.
[18] BITTMAN R, CLEJAN S. Kinetics of cholesterol and phospholipid exchange between mycoplasma membranes and lipid vesicles. Isr J Med Sci. 1987;23(5):398-402.
[19] SHUAI C, LI Y, WANG G, et al. Surface modification of nanodiamond: Toward the dispersion of reinforced phase in poly-l-lactic acid scaffolds. Int J Biol Macromol. 2019;126:1116-1124.
[20] 孔祥宇,王兴,裴志伟,等.生物支架材料及打印技术修复骨缺损[J].中国组织工程研究,2024,28(3):479-485.
[21] KOUSHIK TM, MILLER CM, ANTUNES E. Bone Tissue Engineering Scaffolds: Function of Multi-Material Hierarchically Structured Scaffolds. Adv Healthc Mater. 2023;12(9):e2202766.
[22] ALDANA AA, ABRAHAM GA. Current advances in electrospun gelatin-based scaffolds for tissue engineering applications. Int J Pharm. 2017; 523(2):441-453.
[23] MAIA FR, BASTOS AR, OLIVEIRA JM, et al. Recent approaches towards bone tissue engineering. Bone. 2022;154:116256.
[24] SIDDIQUI N, ASAWA S, BIRRU B, et al. PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications. Mol Biotechnol. 2018; 60(7):506-532.
[25] HEGYESI N, HODOSI E, POLYÁK P, et al. Controlled degradation of poly-ε-caprolactone for resorbable scaffolds. Colloids Surf B Biointerfaces. 2020;186:110678.
[26] MARTINS AF, FACCHI SP, DA CÂMARA PCF, et al. Novel poly(ε-caprolactone)/amino-functionalized tannin electrospun membranes as scaffolds for tissue engineering. J Colloid Interface Sci. 2018;525: 21-30.
[27] CHEN X, LIN Z, FENG Y, et al. Zwitterionic PMCP-Modified Polycaprolactone Surface for Tissue Engineering: Antifouling, Cell Adhesion Promotion, and Osteogenic Differentiation Properties. Small. 2019;15(42):e1903784.
[28] SOLECHAN S, SUPRIHANTO A, WIDYANTO SA, et al. Characterization of PLA/PCL/Nano-Hydroxyapatite (nHA) Biocomposites Prepared via Cold Isostatic Pressing. Polymers (Basel). 2023;15(3):559.
[29] DONG Q, ZHANG M, ZHOU X, et al. 3D-printed Mg-incorporated PCL-based scaffolds: A promising approach for bone healing . Mater Sci Eng C Mater Biol Appl. 2021;129:112372.
[30] 陶圣祥,张之涵,柳辉,等.负载蛋白聚糖4的温度敏感性聚己内酯-聚乙二醇-聚己内酯可注射水凝胶对软骨修复的影响[J].中华实验外科杂志,2023,40(12):2520-2524.
[31] KARAMI P, SALKHI KHASRAGHI S, HASHEMI M, et al. Polymer/nanodiamond composites - a comprehensive review from synthesis and fabrication to properties and applications. Adv Colloid Interface Sci. 2019;269:122-151.
[32] JUNG HS, NEUMAN KC. Surface Modification of Fluorescent Nanodiamonds for Biological Applications. Nanomaterials (Basel). 2021;11(1):153.
[33] TEGAFAW T, LIU S, AHMAD MY, et al. Production, surface modification, physicochemical properties, biocompatibility, and bioimaging applications of nanodiamonds. RSC Adv. 2023;13(46):32381-32397.
[34] TINWALA H, WAIRKAR S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. Mater Sci Eng C Mater Biol Appl. 2019;97:913-931.
[35] 宗薇,柴云鹤,邵小桐,等.基于磷脂-嵌段共聚物杂化囊泡的药物载体[J].精细化工,2022,39(11):2290-2296,2336.
[36] MA Q, GAO Y, SUN W, et al. Self-Assembled chitosan/phospholipid nanoparticles: from fundamentals to preparation for advanced drug delivery. Drug Deliv. 2020;27(1):200-215.
[37] DEHGHANI P, AKBARI A, SAADATKISH M, et al. Acceleration of Wound Healing in Rats by Modified Lignocellulose Based Sponge Containing Pentoxifylline Loaded Lecithin/Chitosan Nanoparticles. Gels. 2022; 8(10):658.
[38] ZHANG F, SONG Q, HUANG X, et al. A Novel High Mechanical Property PLGA Composite Matrix Loaded with Nanodiamond-Phospholipid Compound for Bone Tissue Engineering. ACS Appl Mater Interfaces. 2016;8(2):1087-1097.
[39] DU G, LI J, WANG ZB, et al. Effect of Magnesium Addition on Behavior of Collision and Agglomeration between Solid Inclusion Particles on H13 Steel Melts. Steel Res Int. 2017;88(3). doi:10.1002/srin.201600185
[40] GHARIBSHAHIAN M, SALEHI M, BEHESHTIZADEH N, et al. Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering. Front Bioeng Biotechnol. 2023;11:1168504.
[41] ORDUNA L, OTAEGI I, ARANBURU N, et al. Effect of the Simultaneous Addition of Polycaprolactone and Carbon Nanotubes on the Mechanical, Electrical, and Adhesive Properties of Epoxy Resins Cured with Ionic Liquids. Polymers (Basel). 2023;15(7):1607.
[42] DELAVAR Z, SHOJAEI A. Enhanced mechanical properties of chitosan/nanodiamond composites by improving interphase using thermal oxidation of nanodiamond. Carbohydr Polym. 2017;167:219-228.
[43] JEE AY, LEE M. Mechanical properties of polycarbonate and poly(methyl methacrylate) films reinforced with surface-functionalized nanodiamonds. J Nanosci Nanotechnol. 2011;11(1):533-536.
[44] ANITASARI S, WU CZ, SHEN YK. PCL/Graphene Scaffolds for the Osteogenesis Process. Bioengineering (Basel). 2023;10(3):305.
[45] Vimalraj S. Alkaline phosphatase: Structure, expression and its function in bone mineralization. Gene. 2020;754:144855. |