中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (10): 2105-2112.doi: 10.12307/2025.262

• 生物材料综述 biomaterial review • 上一篇    下一篇

抗菌压电材料:对细菌无选择性杀伤和不产生细菌耐药性

冯  楠,李运峰   

  1. 口腔疾病防治全国重点实验室,国家口腔医学中心,国家口腔疾病临床医学研究中心,四川大学华西口腔医院口腔颌面外科,四川省成都市610041
  • 收稿日期:2024-01-04 接受日期:2024-02-26 出版日期:2025-04-08 发布日期:2024-08-23
  • 通讯作者: Li Yunfeng, Associate professor, Master’s supervisor, Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
  • 作者简介:冯楠,男,1996年生,汉族,四川大学华西口腔医学院在读硕士,主要从事抗菌压电材料方向的研究。
  • 基金资助:
    四川省科技计划资助项目(2023NSFSC0570),项目负责人:李运峰;国家重点研发计划项目(2022YFB3804500),项目负责人之一:李运峰;成都市科技局技术创新研发项目(2022-YF05-01838-SN),项目负责人:李运峰

Antibacterial piezoelectric materials: no selective killing of bacteria and no bacterial resistance

Feng Nan, Li Yunfeng   

  1. Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Received:2024-01-04 Accepted:2024-02-26 Online:2025-04-08 Published:2024-08-23
  • Contact: 李运峰,副教授,硕士生导师,口腔疾病防治全国重点实验室,国家口腔医学中心,国家口腔疾病临床医学研究中心,四川大学华西口腔医院口腔颌面外科,四川省成都市 610041
  • About author:Feng Nan, Master candidate, Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
  • Supported by:
    Sichuan Provincial Science and Technology Plan Funding Project, No. 2023NSFSC0570 (to LYF); National Key Research & Development Plan Project, No. 2022YFB3804500 (to LYF); Technology Innovation Research and Development Project of Chengdu Science and Technology Bureau, No. 2022-YF05-01838-SN (to LYF)

摘要:

文题释义:
压电材料:是一类可以实现力与电相互转化的材料的总称。由于其特殊结构,当压电材料受到一定外力作用时,内部的载流子向材料表面移动从而产生电位差形成电场,这种现象被称为压电效应(也称正压电效应);反之,当压电材料处于一定的电场中时可以发生形变,这种现象被称为逆压电效应。
抗菌作用:是指采用化学或物理方法杀灭或阻碍细菌生长繁殖及其活性的过程。常见的物理抗菌方式有高温、紫外线、过滤和辐射等,常见的化学抗菌方式包括各种各样抗菌剂、抗菌药物和化学制剂等。

背景:压电材料可通过催化作用产生活性氧,通过多种途径来破坏细菌,而且不会导致细菌产生耐药性。这种不依赖抗生素的抗菌方式具有明显的优势,可以对细菌进行无差别的杀伤,为今后的抗菌策略提供了一种新思路。
目的:文章主要总结了有关压电材料特性与抗菌机制,并讨论了部分压电材料在抗菌领域的研究现状。
方法:在PubMed、Web of Science、中国知网和万方数据库中,以“压电材料,压电催化,活性氧,抗菌,细菌感染,抗感染,耐药性”为中文检索词,以“piezoelectric materials,piezoelectricity,piezoelectric catalysis,piezocatalysis,reactive oxygen species,ROS,bacterial infection,antibacterial strategies,anti-infection,drug resistance,drug-resistant bacteria”为英文检索词。检索时间范围重点为2013年1月至2023年12月,通过阅读文题和摘要进行初步筛选;排除中英文重复性研究及内容不相关的文献,经文献质量评价后,最后纳入68篇文献进行综述。
结果与结论:①压电材料是一类性质稳定的环境友好型材料,其大多数具有良好的生物相容性。②压电材料在压电效应过程中可催化产生大量活性氧,活性氧可通过细胞外氧化和细胞内氧化,破坏细菌的细胞膜、胞内蛋白质、酶以及核酸等物质,影响细菌的结构和功能,甚至导致细菌死亡从而实现抗菌。抗菌性能与催化生成活性氧速率相关,而催化速率与材料体系、形貌及外界条件等多种因素相关。③压电催化产生的活性氧对细菌不具备选择性,因此表现出广谱抗菌性,且这种抗菌方式不需要依赖抗菌药物,故不会引起细菌耐药性问题。④结合超声波无创、可控性与穿透性强等优点,未来压电材料作为耐药菌感染的辅助或替代治疗等具有重要价值和巨大潜力。⑤目前压电材料催化效率低下的难题限制了其在抗菌领域的应用,如何提高压电催化效率成为了学者们关注的焦点。
https://orcid.org/0009-0008-3486-396X(冯楠);https://orcid.org/0000-0003-2659-8074(李运峰)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程

关键词: 压电材料, 纳米材料, 压电效应, 压电催化, 活性氧, 抗菌治疗, 抗生素, 耐药性

Abstract: BACKGROUND: Piezoelectric materials can catalyze the generation of reactive oxygen species, which can destroy bacteria by multiple ways without causing drug resistance. This indiscriminately attack bacteria strategy has obvious advantages over traditional antibiotic therapy, thus providing a novel idea for antibacterial strategies.
OBJECTIVE: To summarize the properties and antibacterial mechanisms of piezoelectric materials and discuss the application status of several piezoelectric materials in the field of anti-bacteria.
METHODS: The literature search was performed in PubMed, Web of Science, CNKI, and WanFang databases. Chinese search terms were “piezoelectric materials, piezoelectric catalysis, reactive oxygen species, antibacterial, bacterial infection, anti-infection, drug resistance.” English search terms were “piezoelectric materials, piezoelectricity, piezoelectric catalysis, piezocatalysis, reactive oxygen species, ROS, bacterial infection, antibacterial strategies, anti-infection, drug resistance, drug-resistant bacteria.” Retrieval time was from January 2013 to December 2023. Primary screening was conducted by reading the titles and abstracts. Repetitive studies and irrelevant articles were excluded. Finally, 68 articles were included for review after literature quality evaluation.
RESULTS AND CONCLUSION: (1) Piezoelectric materials are stable and environment-friendly materials, most of which show good biocompatibility. (2) Piezoelectric materials can catalyze a large amount of reactive oxygen species in the process of piezoelectric effect, combined with extracellular oxidation and intracellular oxidation, reactive oxygen species can destroy the membrane of bacteria, intracellular proteins, enzymes, and nucleic acids, disorder the structure and function, even kill the bacteria. The antibacterial performance is related to the rate of catalytic generation of reactive oxygen species, and the catalytic efficiency is related to many factors such as material system, morphology, and external conditions. (3) Reactive oxygen species producted by piezoelectric catalysis can kill bacteria without selectivity and show spectral antibacterial activity. This strategy does not rely on antibiotics and does not cause drug resistance. (4) Combined with the advantages of non-invasive, controllable, and penetrating ultrasound, piezoelectric materials will have significant value and great potential in the future as adjunctive or alternative treatments for drug-resistant bacterial infections and other fields. (5) The current challenge of low catalytic efficiency of piezoelectric materials limits its application in the field of antibacterial, how to improve the piezoelectric catalytic efficiency has become the focus of scholars’ attention.

Key words: piezoelectric material, nanomaterial, piezoelectric effect, piezoelectric catalysis, reactive oxygen species, antimicrobial therapy, antibiotics, drug resistance

中图分类号: