中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (31): 6753-6764.doi: 10.12307/2025.671
• 干细胞综述 stem cell review • 上一篇 下一篇
代月优1,郭丹丹1,2,王茜茜1,2,王白燕1,2,冯书营1,2
收稿日期:
2024-07-11
接受日期:
2024-08-13
出版日期:
2025-11-08
发布日期:
2025-02-26
通讯作者:
冯书营,医学博士,博士生导师,河南中医药大学医学院,河南省郑州市 450046;河南省中医药特医食品工程研究中心,河南省郑州市 450046
作者简介:
代月优,女,1997年生,汉族,河南省开封市人,河南中医药大学医学院在读硕士,主要从事中医药抗肿瘤研究。
并列第一作者:郭丹丹。河南中医药大学医学院,河南省郑州市 450046;河南省中医药特医食品工程研究中心,河南省郑州市 450046
基金资助:
Dai Yueyou1, Guo Dandan1, 2, Wang Qianqian1, 2, Wang Baiyan1, 2, Feng Shuying1, 2
Received:
2024-07-11
Accepted:
2024-08-13
Online:
2025-11-08
Published:
2025-02-26
Contact:
Feng Shuying, MD, Doctoral supervisor, School of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China; Henan Engineering Research Center of Special Medical Food of Traditional Chinese Medicine, Zhengzhou 450046, Henan Province, China
About author:
Dai Yueyou, Master candidate, School of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
Guo Dandan, School of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China; Henan Engineering Research Center of Special Medical Food of Traditional Chinese Medicine, Zhengzhou 450046, Henan Province, China
Dai Yueyou and Guo Dandan contributed equally to this article.
Supported by:
摘要:
文题释义:
外泌体:由细胞分泌的微小囊泡,内含丰富的蛋白质、脂质和核酸,直径为40-160 nm,能够轻松穿越生物屏障。作为纳米级药物递送载体,外泌体不仅具有高度的生物相容性和低免疫原性,还能实现药物的在治疗过程中的精准靶向和缓释,从而显著提高药物的疗效并降低不良反应。因此,外泌体在药物递送领域展现出巨大的应用潜力。中图分类号:
代月优, 郭丹丹, 王茜茜, 王白燕, 冯书营. 工程化外泌体靶向递送药物的抗肿瘤效应[J]. 中国组织工程研究, 2025, 29(31): 6753-6764.
Dai Yueyou, Guo Dandan, Wang Qianqian, Wang Baiyan, Feng Shuying. Anti-tumor effects of engineered exosomes for targeted drug delivery[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(31): 6753-6764.
[1] SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. [2] PRAKASH V, BOSE C, SUNILKUMAR D, et al. Resveratrol as a promising nutraceutical: implications in gut microbiota modulation, inflammatory disorders, and colorectal cancer. Int J Mol Sci. 2024;25(6):3370. [3] GUTIERREZ-MILLAN C, CALVO DíAZ C, LANAO JM, et al. Advances in exosomes-based drug delivery systems. Macromol Biosci. 2021; 21(1):e2000269. [4] PATRA S, PRADHAN B, NAYAK R, et al. Chemotherapeutic efficacy of curcumin and resveratrol against cancer: chemoprevention, chemoprotection, drug synergism and clinical pharmacokinetics. Semin Cancer Biol. 2021;73(3):310-320. [5] ZHONG L, LI Y, XIONG L, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther. 2021;6(1):201. [6] MENG W, HE C, HAO Y, et al. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Deliv. 2020;27(1):585-598. [7] RILEY RS, JUNE CH, LANGER R, et al. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18(3):175-196. [8] YAMAMOTO K, IMAOKA T, TANABE M, et al. New horizon of nanoparticle and cluster catalysis with dendrimers. Chem Rev. 2020; 120(2):1397-1437. [9] SABBAGH F, KIM BS. Recent advances in polymeric transdermal drug delivery systems. J Control Release. 2022;341(6):132-146. [10] YANG E, WANG X, GONG Z, et al. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1):242. [11] WU T, LIU Y, CAO Y, et al. Engineering macrophage exosome disguised biodegradable nanoplatform for enhanced sonodynamic therapy of glioblastoma. Adv Mater. 2022;34(15):e2110364. [12] BAHADORANI M, NASIRI M, DELLINGER K, et al. Engineering exosomes for therapeutic applications: decoding biogenesis, content modification, and cargo loading strategies. Int J Nanomedicine. 2024;19(11): 7137-7164. [13] LIANG Y, XU X, XU L, et al. Chondrocyte-specific genomic editing enabled by hybrid exosomes for osteoarthritis treatment. Theranostics. 2022;12(11):4866-4878. [14] PATHAN M, FONSEKA P, CHITTI SV, et al. Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Res. 2019;47(D1):D516-D519. [15] CHARGAFF E, WEST R. The biological significance of the thromboplastic protein of blood. J Biol Chem. 1946;166(1):189-197. [16] WOLF P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967;13(3):269-288. [17] NUNEZ EA, WALLIS J, GERSHON MD. Secretory processes in follicular cells of the bat thyroid. 3. the occurrence of extracellular vesicles and colloid droplets during arousal from hibernation. Am J Anat. 1974;141(2):179-201. [18] HARDING C, HEUSER J, STAHL P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97(2):329-339. [19] JOHNSTONE RM, MATHEW A, MASON AB, et al. Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. J Cell Physiol. 1991;147(1):27-36. [20] MACKENZIE A, WILSON HL, KISS-TOTH E, et al. Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity. 2001;15(5): 825-835. [21] SKOKOS D, BOTROS HG, DEMEURE C, et al. Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol. 2003;170(6): 3037-3045. [22] LöTVALL J, HILL AF, HOCHBERG F, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the international society for extracellular vesicles. J Extracell Vesicles. 2014;3(3):26913. [23] JIANG D, JIANG Z, LU D, et al. Migrasomes provide regional cues for organ morphogenesis during zebrafish gastrulation. Nat Cell Biol. 2019;21(8):966-977. [24] CHEN C, LIU J, LIN X, et al. Crosstalk between cancer-associated fibroblasts and regulated cell death in tumors: insights into apoptosis, autophagy, ferroptosis, and pyroptosis. Cell Death Discov. 2024;10(1):189. [25] KALLURI R, LEBLEU VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. [26] CHAUDHARY PK, KIM S, KIM S. Shedding light on the cell biology of platelet-derived extracellular vesicles and their biomedical applications. Life (Basel). 2023;13(6):1403. [27] 尚志,章瑾,杨明睿,等.小细胞外囊泡在乳腺癌诊断与治疗中的研究进展[J].中国生物工程杂志,2024,44(4):54-66. [28] KUMAR MA, BABA SK, SADIDA HQ, et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther. 2024;9(1):27. [29] CHEN J, LI P, ZHANG T, et al. Review on strategies and technologies for exosome isolation and purification. Front Bioeng Biotechnol. 2021; 9(5):811971. [30] KUKLIN V, SOVERSHAEV M, BJERNER J, et al. Influence of therapeutic plasma exchange treatment on short-term mortality of critically ill adult patients with sepsis-induced organ dysfunction: a systematic review and meta-analysis. Crit Care. 2024;28(1):12. [31] ZHU L, SUN H T, WANG S, et al. Isolation and characterization of exosomes for cancer research. J Hematol Oncol. 2020;13(1):152. [32] RYU KJ, LEE JY, PARK C, et al. Isolation of small extracellular vesicles from human serum using a combination of ultracentrifugation with polymer-based precipitation. Ann Lab Med. 2020;40(3):253-258. [33] TURKIEH A, BESEME O, SAURA O, et al. LIPCAR levels in plasma-derived extracellular vesicles is associated with left ventricle remodeling post-myocardial infarction. J Transl Med. 2024;22(1):31. [34] FORTUNATO D, GIANNOUKAKOS S, GIMéNEZ-CAPITáN A, et al. Selective isolation of extracellular vesicles from minimally processed human plasma as a translational strategy for liquid biopsies. Biomark Res. 2022;10(1):57. [35] SHU S, YANG Y, ALLEN CL, et al. Purity and yield of melanoma exosomes are dependent on isolation method. J Extracell Vesicles. 2020;9(1): 1692401. [36] LIU J L, ZHANG L, HUANG Y, et al. Epsin1-mediated exosomal sorting of Dll4 modulates the tubular-macrophage crosstalk in diabetic nephropathy. Mol Ther. 2023;31(5):1451-1467. [37] YOSHITAKE J, AZAMI M, SEI H, et al. Rapid isolation of extracellular vesicles using a hydrophilic porous silica gel-based size-exclusion chromatography column. Anal Chem. 2022;94(40):13676-13681. [38] HOSSEIN F, ANGELI P. A review of acoustofluidic separation of bioparticles. Biophys Rev. 2023;15(6):2005-2025. [39] NIEUWLAND R, SILJANDER PR. A beginner’s guide to study extracellular vesicles in human blood plasma and serum. J Extracell Vesicles. 2024;13(1):e12400. [40] LIU Y, LI M, LIU H, et al. Cancer diagnosis using label-free SERS-based exosome analysis. Theranostics. 2024;14(5):1966-1981. [41] GOO J, LEE Y, LEE J, et al. Extracellular vesicles in therapeutics: a comprehensive review on applications, challenges, and clinical progress. Pharmaceutics. 2024;16(3):311. [42] PATIL SM, SAWANT SS, KUNDA NK. Exosomes as drug delivery systems: a brief overview and progress update. Eur J Pharm Biopharm. 2020; 154(8):259-269. [43] DAßLER-PLENKER J, KüTTNER V, EGEBLAD M. Communication in tiny packages: exosomes as means of tumor-stroma communication. Biochim Biophys Acta Rev Cancer. 2020;1873(2):188340. [44] HERRMANN IK, WOOD MJA, FUHRMANN G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol. 2021; 16(7):748-759. [45] SILVA AKA, MORILLE M, PIFFOUX M, et al. Development of extracellular vesicle-based medicinal products: a position paper of the group “Extracellular Vesicle translatiOn to clinicaL perspectiVEs - EVOLVE France”. Adv Drug Deliv Rev. 2021;179(6):114001. [46] SHEARN A I U, ADAY S, BEN-AICHA S, et al. Analysis of neat biofluids obtained during cardiac surgery using nanoparticle tracking analysis: methodological considerations. Front Cell Dev Biol. 2020;8(3):367. [47] LUO N, LI J, CHEN Y, et al. Hepatic stellate cell reprogramming via exosome-mediated CRISPR/dCas9-VP64 delivery. Drug Deliv. 2021; 28(1):10-18. [48] LI M, CHEN F, YANG Q, et al. Biomaterial-based CRISPR/Cas9 delivery systems for tumor treatment. Biomater Res. 2024;30(28):23. [49] SADEGHI S, TEHRANI FR, TAHMASEBI S, et al. Exosome engineering in cell therapy and drug delivery. Inflammopharmacology. 2023;31(1): 145-169. [50] MCANDREWS KM, XIAO F, CHRONOPOULOS A, et al. Exosome-mediated delivery of CRISPR/Cas9 for targeting of oncogenic Kras(G12D) in pancreatic cancer. Life Sci Alliance. 2021;4(9):e202000875. [51] GODSE S, ZHOU L, SAKSHI S, et al. Nanocarrier-mediated curcumin delivery: an adjuvant strategy for CNS disease treatment. Exp Biol Med (Maywood). 2023;248(22):2151-2166. [52] GONZáLEZ-SARRíAS A, IGLESIAS-AGUIRRE C E, CORTéS-MARTíN A, et al. Milk-derived exosomes as nanocarriers to deliver curcumin and resveratrol in breast tissue and enhance their anticancer activity. Int J Mol Sci. 2022;23(5):2860. [53] WEI H, CHEN F, CHEN J, et al. Mesenchymal stem cell derived exosomes as nanodrug carrier of doxorubicin for targeted osteosarcoma therapy via SDF1-CXCR4 axis. Int J Nanomedicine. 2022;17(8):3483-3495. [54] SUN H, BHANDARI K, BURROLA S, et al. Pancreatic ductal cell-derived extracellular vesicles are effective drug carriers to enhance paclitaxel’s efficacy in pancreatic cancer cells through cathrin-mediated endocytosis. Int J Mol Sci. 2022;23(9):4773. [55] JIN Z, NA J, LIN X, et al. Plant-derived exosome-like nanovesicles: a novel nanotool for disease therapy. Heliyon. 2024;10(9):e30630. [56] YI C, LU L, LI Z, et al. Plant-derived exosome-like nanoparticles for microRNA delivery in cancer treatment. Drug Deliv Transl Res. 2024; 11(7):13346. [57] DAD HA, GU TW, ZHU AQ, et al. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms. Mol Ther. 2021;29(1):13-31. [58] XI XM, XIA SJ, LU R. Drug loading techniques for exosome-based drug delivery systems. Pharmazie. 2021;76(2):61-67. [59] SONG Y, HU J, MA C, et al. Macrophage-derived exosomes as advanced therapeutics for inflammation: current progress and future perspectives. Int J Nanomedicine. 2024;19:1597-1627. [60] YANG Q, LI S, OU H, et al. Exosome-based delivery strategies for tumor therapy: an update on modification, loading, and clinical application. J Nanobiotechnology. 2024;22(1):41. [61] BAGHERI E, ABNOUS K, FARZAD S A, et al. Targeted doxorubicin-loaded mesenchymal stem cells-derived exosomes as a versatile platform for fighting against colorectal cancer. Life Sci. 2020;261(5):118369. [62] ZHENG C, ZHONG Q, YI K, et al. Anti-phagocytosis-blocking repolarization-resistant membrane-fusogenic liposome (ARMFUL) for adoptive cell immunotherapy. Sci Adv. 2023;9(32):eadh2413. [63] SAFAEI S, FADAEE M, FARZAM OR, et al. Exploring the dynamic interplay between exosomes and the immune tumor microenvironment: implications for breast cancer progression and therapeutic strategies. Breast Cancer Res. 2024;26(1):57. [64] BOLUMAR D, MONCAYO-ARLANDI J, GONZALEZ-FERNANDEZ J, et al. Vertical transmission of maternal DNA through extracellular vesicles associates with altered embryo bioenergetics during the periconception period. Elife. 2023;12(6):RP88008. [65] WANG Z, HE Z, WAN J, et al. EphA2-specific microvesicles derived from tumor cells facilitate the targeted delivery of chemotherapeutic drugs for osteosarcoma therapy. J Nanobiotechnology. 2024;22(1):89. [66] XIE X, CHENG P, HU L, et al. Bone-targeting engineered small extracellular vesicles carrying anti-miR-6359-CGGGAGC prevent valproic acid-induced bone loss. Signal Transduct Target Ther. 2024;9(1):24. [67] ZHANG Y, BELAID M, LUO X, et al. Probing milk extracellular vesicles for intestinal delivery of RNA therapies. J Nanobiotechnology. 2023; 21(1):406. [68] LI Z, GUO K, GAO Z, et al. Colocalization of protein and microRNA markers reveals unique extracellular vesicle sub-populations for early cancer detection. bioRxiv. 2024;10(9):eadh8689. [69] YANG B, CHEN Y, SHI J. Exosome Biochemistry and advanced nanotechnology for next-generation theranostic platforms. Adv Mater. 2019;31(2):e1802896. [70] KOMURO H, AMINOVA S, LAURO K, et al. Advances of engineered extracellular vesicles-based therapeutics strategy. Sci Technol Adv Mater. 2022;23(1):655-681. [71] 赖威,彭敦钰,李晶,等.肺癌微环境中肿瘤源性外泌体的通讯与免疫调节作用[J].中华实验外科杂志,2024,41(4):881-884. [72] HUANG X, WU W, JING D, et al. Engineered exosome as targeted lncRNA MEG3 delivery vehicles for osteosarcoma therapy. J Control Release. 2022;343(3):107-117. [73] KANG C, HAN P, LEE J S, et al. Anchor, spacer, and ligand-modified engineered exosomes for trackable targeted therapy. Bioconjug Chem. 2020;31(11):2541-2552. [74] HU Y, LI X, ZHANG Q, et al. Exosome-guided bone targeted delivery of antagomir-188 as an anabolic therapy for bone loss. Bioact Mater. 2021;6(9):2905-2913. [75] LIANG G, ZHU Y, ALI D J, et al. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnology. 2020;18(1):10. [76] LI S, WU Y, DING F, et al. Engineering macrophage-derived exosomes for targeted chemotherapy of triple-negative breast cancer. Nanoscale. 2020;12(19):10854-10862. [77] PARK J, CHANG ES, KIM JY, et al. C-MET-positive circulating tumor cells and cell-free DNA as independent prognostic factors in hormone receptor-positive/HER2-negative metastatic breast cancer. Breast Cancer Res. 2024;26(1):13. [78] NONAKA T. Application of engineered extracellular vesicles to overcome drug resistance in cancer. Front Oncol. 2022;12(15):1070479. [79] WANG J, CHEN D, HUANG W, et al. Aptamer-functionalized field-effect transistor biosensors for disease diagnosis and environmental monitoring. Exploration (Beijing). 2023;3(3):20210027. [80] HAN Q, XIE QR, LI F, et al. Targeted inhibition of SIRT6 via engineered exosomes impairs tumorigenesis and metastasis in prostate cancer. Theranostics. 2021;11(13):6526-6541. [81] ISHIGURO K, YAN IK, LEWIS-TUFFIN L, et al. Targeting liver cancer stem cells using engineered biological nanoparticles for the treatment of hepatocellular cancer. Hepatol Commun. 2020;4(2):298-313. [82] TAN F, LI X, WANG Z, et al. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther. 2024;9(1):17. [83] ZHANG J, JI C, ZHANG H, et al. Engineered neutrophil-derived exosome-like vesicles for targeted cancer therapy. Sci Adv. 2022;8(2):eabj8207. [84] ZHUANG M, CHEN X, DU D, et al. SPION decorated exosome delivery of TNF-α to cancer cell membranes through magnetism. Nanoscale. 2020;12(1):173-188. [85] LIU Y, BAI L, GUO K, et al. Erratum: focused ultrasound-augmented targeting delivery of nanosonosensitizers from homogenous exosomes for enhanced sonodynamic cancer therapy: erratum. Theranostics. 2022;12(17):7643-7644. [86] CHENG L, ZHANG X, TANG J, et al. Gene-engineered exosomes-thermosensitive liposomes hybrid nanovesicles by the blockade of CD47 signal for combined photothermal therapy and cancer immunotherapy. Biomaterials. 2021;275(12):120964. [87] LI G, WANG J, XU M, et al. Engineered exosome for NIR-triggered drug delivery and superior synergistic chemo-phototherapy in a glioma model. Applied Materials Today. 2020;20(13):100723. [88] ADITI K, SABOOR K, NANDINI P, et al. Dual pH and ultrasound responsive nanocarriers: a smart approach in cancer theranostics, Drug Delivery Science and Technology. 2024;95(2):105560. [89] ESSOLA JM, ZHANG M, YANG H, et al. Exosome regulation of immune response mechanism: Pros and cons in immunotherapy. Bioact Mater. 2024;32(12):124-146. [90] LEI P, CHENXV Z, GUANLUN Z, et al. The modulation of tumor-associated macrophages via natural nanomodulators by neutralizing the acidic tumor microenvironment for tumor treatment. Mater Adv. 2024;5(1):329-335. [91] NGUYEN CAO TG, KANG JH, KIM W, et al. Engineered extracellular vesicle-based sonotheranostics for dual stimuli-sensitive drug release and photoacoustic imaging-guided chemo-sonodynamic cancer therapy. Theranostics. 2022;12(3):1247-1266. [92] WU W, ZHONG S, GONG Y, et al. A new molecular probe: an NRP-1 targeting probe for the grading diagnosis of glioma in nude mice. Neurosci Lett. 2020;714(1):134617. [93] YE Y, GAO M, SHI W, et al. The immunomodulatory effects of mesenchymal stem cell-derived extracellular vesicles in Alzheimer’s disease. Front Immunol. 2023;14(6):1325530. [94] HE S, ZHAO Z. Genetically engineered cell-derived nanovesicles for cancer immunotherapy. Nanoscale. 2024;16(17):8317-8334. [95] KIM SY, GUK D, JEONG Y, et al. Engineered hybrid vesicles and cellular internalization in mammary cancer cells. Pharmaceutics. 2024;16(4):440. [96] BOSE RJ, KUMAR US, GARCIA-MARQUES F, et al. Engineered cell-derived vesicles displaying targeting peptide and functionalized with nanocarriers for therapeutic microRNA delivery to triple-negative breast cancer in mice. Adv Healthc Mater. 2022;11(5):e2101387. [97] GUO Z, ZHANG Y, XU W, et al. Engineered exosome-mediated delivery of circDIDO1 inhibits gastric cancer progression via regulation of MiR-1307-3p/SOCS2 axis. J Transl Med. 2022;20(1):326. [98] HE C, JAFFAR ALI D, LI Y, et al. Engineering of HN3 increases the tumor targeting specificity of exosomes and upgrade the anti-tumor effect of sorafenib on huh-7 cells. PeerJ. 2020;8(3):e9524. [99] JAYASINGHE MK, PIRISINU M, YANG Y, et al. Surface-engineered extracellular vesicles for targeted delivery of therapeutic RNAs and peptides for cancer therapy. Theranostics. 2022;12(7):3288-3315. [100] LI B, CHEN X, QIU W, et al. Synchronous disintegration of ferroptosis defense axis via engineered exosome-conjugated magnetic nanoparticles for glioblastoma therapy. Adv Sci (Weinh). 2022;9(17):e2105451. [101] GHARAVI AT, IRIAN S, NIKNEJAD A, et al. Harnessing exosomes as a platform for drug delivery in breast cancer: a systematic review for in vivo and in vitro studies. Mol Ther Oncol. 2024;32(2):200800. [102] YAN Z, XIAO P, JI P, et al. Enhanced breast cancer therapy using multifunctional lipid-coated nanoparticles combining curcumin chemotherapy and nitric oxide gas delivery. Sci Rep. 2024;14(1):18107. [103] WANG Y, ZHANG T, HE X. Advances in the role of microRNAs associated with the PI3K/AKT signaling pathway in lung cancer. Front Oncol. 2023;13(6):1279822. [104] ZHANG K, DONG C, CHEN M, et al. Extracellular vesicle-mediated delivery of miR-101 inhibits lung metastasis in osteosarcoma. Theranostics. 2020;10(1):411-425. [105] GUNASSEKARAN GR, POONGKAVITHAI VADEVOO SM, BAEK MC, et al. M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages. Biomaterials. 2021;278(11):121137. [106] HU S, MA J, SU C, et al. Engineered exosome-like nanovesicles suppress tumor growth by reprogramming tumor microenvironment and promoting tumor ferroptosis. Acta Biomater. 2021;135(11):567-581. [107] HUANG L, RONG Y, TANG X, et al. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Mol Cancer. 2022;21(1):45. [108] QIU J, JIANG Y, YE N, et al. Leveraging the intratumoral microbiota to treat human cancer: are engineered exosomes an effective strategy?. J Transl Med. 2024;22(1):728. [109] KAMERKAR S, LENG C, BURENKOVA O, et al. Exosome-mediated genetic reprogramming of tumor-associated macrophages by exoASO-STAT6 leads to potent monotherapy antitumor activity. Sci Adv. 2022; 8(7):eabj7002. [110] ZUO B, ZHANG Y, ZHAO K, et al. Universal immunotherapeutic strategy for hepatocellular carcinoma with exosome vaccines that engage adaptive and innate immune responses. J Hematol Oncol. 2022;15(1):46. [111] NGUYEN CAO TG, KANG JH, YOU JY, et al. Safe and targeted sonodynamic cancer therapy using biocompatible exosome-based nanosonosensitizers. ACS Appl Mater Interfaces. 2021;13(22):25575-25588. [112] WANG D, WAN Z, YANG Q, et al. Sonodynamical reversion of immunosuppressive microenvironment in prostate cancer via engineered exosomes. Drug Deliv. 2022;29(1):702-713. [113] LEE JH, JUNG KH, MINA K, et al. Extracellular vesicles deliver sodium iodide symporter protein and promote cancer cell radioiodine therapy. Sci Rep. 2022;12(1):11190. [114] MA X, YAO M, GAO Y, et al. Functional immune cell-derived exosomes engineered for the trilogy of radiotherapy sensitization. Adv Sci (Weinh). 2022;9(23):e2106031. [115] TIAN T, LIANG R, EREL-AKBABA G, et al. Immune checkpoint inhibition in GBM primed with radiation by engineered extracellular vesicles. ACS Nano. 2022;16(2):1940-1953. [116] TIAN R, WANG Z, NIU R, et al. Tumor exosome mimicking nanoparticles for tumor combinatorial chemo-photothermal therapy. Front Bioeng Biotechnol. 2020;8(12):1010. [117] YANG M, WANG X, PU F, et al. Engineered exosomes-based photothermal therapy with MRI/CT imaging guidance enhances anticancer efficacy through deep tumor nucleus penetration. Pharmaceutics. 2021;13(10):1593. [118] WANG L, ZHOU X, ZOU W, et al. Exosomes containing miRNAs targeting HER2 synthesis and engineered to adhere to HER2 on tumor cells surface exhibit enhanced antitumor activity. J Nanobiotechnology. 2020;18(1):153. [119] LIU X, XIAO C, XIAO K. Engineered extracellular vesicles-like biomimetic nanoparticles as an emerging platform for targeted cancer therapy. J Nanobiotechnology. 2023;21(1):287. [120] ZHENG W, ZHU T, TANG L, et al. Inhalable CAR-T cell-derived exosomes as paclitaxel carriers for treating lung cancer. J Transl Med. 2023;21(1):383. [121] LIN X, LIN L, WU J, et al. A targeted siRNA-loaded PDL1-exosome and functional evaluation against lung cancer. Thorac Cancer. 2022; 13(11):1691-1702. [122] LV Q, CHENG L, LU Y, et al. Thermosensitive exosome-liposome hybrid nanoparticle-mediated chemoimmunotherapy for improved treatment of metastatic peritoneal cancer. Adv Sci (Weinh). 2020;7(18):2000515. [123] NENE LC, ABRAHAMSE H. Design consideration of phthalocyanines as sensitizers for enhanced sono-photodynamic combinatorial therapy of cancer. Acta Pharm Sinb. 2024;14(3):1077-1097. [124] GUO Y, WAN Z, ZHAO P, et al. Ultrasound triggered topical delivery of Bmp7 mRNA for white fat browning induction via engineered smart exosomes. J Nanobiotechnology. 2021;19(1):402. [125] HILLMAN T. The application of plant-exosome-like nanovesicles as improved drug delivery systems for cancer vaccines. Discov Oncol. 2024;15(1):136. [126] LIU X, LOU K, ZHANG Y, et al. Unlocking the medicinal potential of plant-derived extracellular vesicles: current progress and future perspectives. Int J Nanomedicine. 2024;19(7):4877-4892. [127] AIMALETDINOV A, GOMZIKOVA M. Tracking of extracellular vesicles’ biodistribution: new methods and approaches. Int J Mol Sci. 2022; 25(19):11312. [128] ZIMMERMAN A, OLIVEIRA G, SU X, et al. Multimode chromatography-based techniques for high purity isolation of extracellular vesicles from human blood plasma. J Extracell Biol. 2024;3(3):e147. [129] CHEN H, WANG L, ZENG X, et al. Exosomes, a new star for targeted delivery. Front Cell Dev Biol. 2021;8(9):751079. [130] LIU J, REN L, LI S, et al. The biology, function, and applications of exosomes in cancer. Acta Pharm Sin B. 2021;11(9):2783-2797. [131] RAJPUT A, VARSHNEY A, BAJAJ R, et al. Exosomes as new generation vehicles for drug delivery: biomedical applications and future perspectives. Molecules. 2022;27(21):7289. [132] RHIM W, KIM J, LEE S, et al. Recent advances in extracellular vesicle engineering and its applications to regenerative medicine. Biomater Res. 2023;11;27(1):130. |
No related articles found! |
1.1.8 文献检索策略 以PubMed数据库检索策略为例,见图1。
1.2 入组标准
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
文题释义:
外泌体:由细胞分泌的微小囊泡,内含丰富的蛋白质、脂质和核酸,直径为40-160 nm,能够轻松穿越生物屏障。作为纳米级药物递送载体,外泌体不仅具有高度的生物相容性和低免疫原性,还能实现药物的在治疗过程中的精准靶向和缓释,从而显著提高药物的疗效并降低不良反应。因此,外泌体在药物递送领域展现出巨大的应用潜力。#br#工程化外泌体:是天然外泌体经过生物工程技术精细改造后的产物。这些改造后的外泌体不仅保留了原有的特性,还具备了更高的载药效率、更精准的靶向性和更强的抵抗机体清除能力。通过调整其膜负载物或内容物,工程化外泌体能够针对特定疾病或治疗需求进行定制,为药物递送和疾病治疗提供了新的高效途径。
#br#
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
工程化外泌体在靶向递送药物抗肿瘤领域取得显著进展。通过生物、物理和化学等修饰,外泌体被赋予特定靶向性,实现药物高效和精准递送。这一创新技术为癌症治疗提供了新策略,展现出巨大的临床应用潜力。
#br#
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||