中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (10): 2061-2066 .doi: 10.12307/2025.267

• 材料生物相容性 material biocompatibility • 上一篇    下一篇

不同弹性模量计算机辅助设计和计算机辅助制造桩核材料的应力分析

徐良伟1,田锡天1,陈  林2,高红燕2,朱  贤2,杨桂灿2,陈英豪2   

  1. 1西北工业大学,陕西省西安市  710072;2浙江伟联科技股份有限公司,浙江省嘉兴市  314000
  • 收稿日期:2023-12-12 接受日期:2024-02-22 出版日期:2025-04-08 发布日期:2024-08-22
  • 作者简介:徐良伟,男,1989年生,浙江省台州市人,汉族,博士,讲师,主要从事口腔领域医工结合、3D打印、生物力学仿真方面的研究。

Stress analysis of computer aided design/computer aided manufacture post-core materials with different elastic moduli

Xu Liangwei1, Tian Xitian1, Chen Lin2, Gao Hongyan2, Zhu Xian2, Yang Guican2, Chen Yinghao2   

  1. 1Northwestern Polytechnical University, Xi’an 710072, Shaanxi Province, China; 2Zhejiang Weilian Technology Co., Ltd., Jiaxing 314000, Zhejiang Province, China
  • Received:2023-12-12 Accepted:2024-02-22 Online:2025-04-08 Published:2024-08-22
  • About author:Xu Liangwei, MD, Lecturer, Northwestern Polytechnical University, Xi’an 710072, Shaanxi Province, China

摘要:

文题释义:
计算机辅助设计和计算机辅助制造:计算机辅助设计主要运用计算机技术生成和运用各种数字信息和图形信息,以进行产品的设计。计算机辅助制造是由计算机控制的数控加工设备对产品进行自动加工成型的制作技术。
最大等效应力:是指材料在复杂应力状态下所能承受的最大等效于单向拉伸的应力值,这个应力值是材料在各种不同方向的应力分量的等效总和,用来表示材料在复杂应力状态下的最大弹性极限。最大等效应力的大小取决于材料的种类、加工工艺和材料所处的应力状态等因素。如果这个最大等效应力值超过材料的强度极限,材料就会发生断裂或塑性变形,导致材料失效。因此,最大等效应力是评估材料在复杂应力状态下能否承受外力的关键参数,也是进行结构设计和强度分析的重要依据。

背景:桩核修复是牙体缺损修复的一种常规选择,然而不同桩核材料的修复效果存在差异。
目的:利用有限元方法评估不同弹性模量桩核修复模型中桩核与牙根黏结剂部位的应力分布情况。
方法:在三维建模软件中构建一个三维根管治疗过的上颌中切牙模型,进行全瓷冠修复,修复中的桩核材料分别使用纳米陶瓷树脂(弹性模量12.8 GPa)、复合树脂(弹性模量16 GPa)、混合陶瓷(弹性模量34.7 GPa)、玻璃陶瓷(弹性模量95 GPa)、钛合金(弹性模量112 GPa)和氧化锆(弹性模量209.3 GPa),将模型约束在皮质骨中,在中切牙牙冠舌侧1/3 处加载与牙体长轴呈45°的100 N集中力,通过最大主应力分析修复模型中桩核、牙本质及桩与牙根黏结剂的应力分布。
结果与结论:①当使用弹性模量较高的桩核材料时,修复模型中的桩核应力较集中;当使用弹性模量接近牙本质的桩核材料(纳米陶瓷树脂和复合树脂)时,桩核的应力分布较均匀;无论桩核材料如何,各修复模型中牙本质上的应力分布相似;使用弹性模量更高的桩核时,修复模型中桩与牙根黏结剂处显示出更多的应力集中。②纳米陶瓷树脂模型中桩核、牙根及桩与牙根黏结剂处的最大应力值分别为31.00,33.21,0.51 MPa,复合树脂模型中桩核、牙根及桩与牙根黏结剂处的最大应力值分别为36.84,33.14,0.59 MPa,混合陶瓷模型中桩核、牙根及桩与牙根黏结剂处的最大应力值分别为64.05,32.83,1.00 MPa,玻璃陶瓷模型中桩核、牙根及桩与牙根黏结剂处的最大应力值分别为112.30,32.69,1.73 MPa,钛合金模型中桩核、牙根及桩与牙根黏结剂处的最大应力值分别为120.00,32.17,1.86 MPa,氧化锆模型中桩核、牙根及桩与牙根黏结剂处的最大应力值分别为148.80,31.85,2.28 MPa。③桩核材料的弹性模量越高,进行桩核修复时桩核处的最大应力值越大,桩核材料弹性模量对修复模型中桩与牙根黏结剂处与牙本质的最大应力值无明显影响。
https://orcid.org/0000-0002-0024-1862(徐良伟)

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程

关键词: 桩核, 弹性模量, 有限元分析, 计算机辅助设计与制造, 最大应力值, 等效应力

Abstract: BACKGROUND: Post and core restoration is a common choice for tooth defects, but the repair effects of various post and core materials are different.
Objective: To evaluate the stress distribution at the post and core, tooth root, and bonding agent site of post and core models made of different elastic modulus post and core materials using finite element method. 
Methods: A three-dimensional root canal treated maxillary central incisor model was built using three-dimensional modeling software, which was restored with a full ceramic crown. The post and core materials in the restoration used nanoceramic resin (elastic modulus=12.8 GPa), composite resin (elastic modulus=16 GPa), hybrid ceramic (elastic modulus=34.7 GPa), glass ceramic (elastic modulus=95 GPa), titanium alloy (elastic modulus=112 GPa), and zirconia (elastic modulus=209.3 GPa). The model was fixed in cortical bone. A 100 N concentrated force of 45° from the long axis of the tooth was applied to 1/3 of the crown and tongue side of the central incisor. The stress distribution of the post and core, dentin, and tooth-root bonding agent in the model was repaired by the maximum principal stress criterion.
Results and conclusion: (1) When the post and core materials with higher elastic modulus was used, the post-core stress in the repair model was more concentrated. When the elastic modulus of the post and core materials (nanoceramic resin and composite resin) was close to dentin, the stress distribution of the post and core was more uniform. The stress distribution of dentin in all restoration models was similar regardless of post and core materials. When the post and core with higher elastic modulus was used, more stress concentration was shown at the post and root bonding agent in the repair model. (2) The maximum stress values at the post and core, tooth root, and the bonding agent site of post and tooth root in the nanoceramic resin model were 31.00, 33.21, and 0.51 MPa, respectively. The maximum stress values at the post and core, tooth root, and the bonding agent between the post and tooth root in the composite resin model were 36.84, 33.14, and 0.59 MPa, respectively. In the mixed ceramic model, the maximum stress values at the post and core, tooth root, and the bonding agent between the post and tooth root were 64.05, 32.83, and 1.00 MPa, respectively. In the glass ceramic model, the maximum stress values at the post and core, tooth root, and the bonding agent between the post and tooth root were 112.30, 32.69, and 1.73 MPa, respectively. In the titanium alloy model, the maximum stress values of the post and core, tooth root, and the bonding agent between the post and tooth root were 120.00, 32.17, and 1.86 MPa, respectively. In the zirconia model, the maximum stress values of the post and core, tooth root, and the bonding agent between the post and tooth root were 148.80, 31.85, and 2.28 MPa, respectively. (3) The higher the elastic modulus of the post and core material, the higher the maximum stress at the post and core during restoration. The elastic modulus of the post and core material had no significant effect on the maximum stress of the dental bonding agent and dentin.

Key words: post and core, elastic modulus, finite element analysis, computer aided design/computer aided manufacture, maximum stress value, equivalent stress

中图分类号: