中国组织工程研究 ›› 2013, Vol. 17 ›› Issue (53): 9132-9138.doi: 10.3969/j.issn.2095-4344.2013.53.006
• 细胞与组织移植 cell and tissue transplantation • 上一篇 下一篇
万 真1,2,张晓刚1,2,郑幸龙1,2,马 锋1,2,马 佳1,2,向俊西1,2,王浩华1,2,吕 毅1,2
修回日期:
2013-09-24
出版日期:
2013-12-31
发布日期:
2013-12-31
通讯作者:
吕毅,博士,教授,博士生导师,西安交通大学第一附属医院肝胆外科,陕西省西安市710061;西安交通大学先进外科技术与工程研究所,陕西省西安市 710061
luyi169@126.com
作者简介:
万真☆,男,1985年生,江西省南昌市人,汉族,西安交通大学医学部在读博士,主要从事肝干细胞和肝再生的研究。
基金资助:
国家自然科学基金(30600575;30830099)资助**
Wan Zhen1, 2, Zhang Xiao-gang1, 2, Zheng Xing-long1, 2, Ma Feng1, 2, Ma Jia1, 2, Xiang Jun-xi1, 2, Wang Hao-hua1, 2, Lü Yi1, 2
Revised:
2013-09-24
Online:
2013-12-31
Published:
2013-12-31
Contact:
Lü Yi, Ph.D., Professor, Doctoral supervisor, Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China; Institute of Advanced Surgery Technology and Engineering, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
luyi169@126.com
About author:
Wan Zhen☆, Studying for doctorate, Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China; Institute of Advanced Surgery Technology and Engineering, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
Supported by:
The National Natural Science Foundation of China, No. 30600575*, 30830099*
摘要:
背景:成体肝前体细胞可在受体肝脏内定植并分化为肝细胞。不过,异种肝前体细胞移植能否促进急性肝损伤的恢复,脾脏微环境能否促进移植物的存活和向肝细胞分化,尚没有研究。 目的:评价异种肝前体细胞移植治疗急性肝损伤的作用;监测移植肝前体细胞在大鼠脾脏实质内的定植及向肝细胞的分化。 方法:体外培养雄性小鼠来源的肝前体细胞系肝上皮样前体细胞。通过CCl4腹腔注射联合2/3肝切除构建急性肝损伤大鼠模型,进行肝上皮样前体细胞脾脏移植。在肝切除后1,5,14和21 d,苏木精-伊红染色观察肝脏病理改变,全自动生化分析仪监测血清转氨酶变化,PCR反应检测脾脏组织Y染色体特异性序列Sry,脾脏CK-19和Alb免疫组织化学追踪移植肝上皮样前体细胞的植入和肝细胞分化。 结果与结论:肝上皮样前体细胞可在体外长期培养,保持增殖能力和双向分化潜能。肝上皮样前体细胞脾脏移植后,肝损伤大鼠肝细胞肿胀明显减轻,丙氨酸转氨酶和天门冬氨酸转氨酶下降更明显。移植后1,5,14和21 d,脾脏DNA中均能检测到Sry序列。在整个实验期间CK-19阳性细胞在大鼠脾脏实质内始终存在。Alb阳性细胞在移植后5 d在脾脏实质中出现,随后阳性细胞数逐渐增多。实验表明,移植肝前体细胞能在大鼠脾脏实质中植入,并分化为肝细胞,能有效促进CCl4腹腔注射联合2/3肝切除诱导的大鼠急性肝损伤的修复过程。
中图分类号:
万 真,张晓刚,郑幸龙,马 锋,马 佳,向俊西,王浩华,吕 毅. 异种肝前体细胞移植治疗急性肝损伤大鼠[J]. 中国组织工程研究, 2013, 17(53): 9132-9138.
Wan Zhen1, 2, Zhang Xiao-gang1, 2, Zheng Xing-long1, 2, Ma Feng1, 2, Ma Jia1, 2, Xiang Jun-xi1, 2, Wang Hao-hua1, 2, Lü Yi1, 2. Intrasplenic delivery of xenogeneic hepatic progenitor cells ameliorates acute liver injury in rats[J]. Chinese Journal of Tissue Engineering Research, 2013, 17(53): 9132-9138.
[1] Jindal A, Kumar M, Sarin SK. Management of acute hepatitis B and reactivation of hepatitis B. Liver Int. 2013;33 Suppl 1: 164-175.[2] Karsan HA, Parekh S. Management of alcoholic hepatitis: Current concepts. World J Hepatol. 2013;4(12):335-341.[3] Suk KT, Kim DJ. Drug-induced liver injury: present and future. Clin Mol Hepatol. 2012;18(3):249-257.[4] Bernal W, Hyyrylainen A, Gera A, et al. Lessons from look-back in acute liver failure? A single centre experience of 3300 patients. J Hepatol. 2013;59(1):74-80.[5] Jelnes P, Santoni-Rugiu E, Rasmussen M, et al. Remarkable heterogeneity displayed by oval cells in rat and mouse models of stem cell-mediated liver regeneration. Hepatology. 2007;45(6):1462-1470.[6] Wang X, Foster M, Al-Dhalimy M, et al. The origin and liver repopulating capacity of murine oval cells. Proc Natl Acad Sci U S A. 2003;100 suppl 1:11881-11888.[7] Duncan AW, Dorrell C, Grompe M. Stem cells and liver regeneration. Gastroenterology. 2009;137(2):466-481.[8] Zhang W, Tucker-Kellogg L, Narmada BC, et al. Cell-delivery therapeutics for liver regeneration. Adv Drug Deliv Rev. 2010; 62(7-8):814-826.[9] Gupta S, Rajvanshi P, Sokhi R, et al. Entry and integration of transplanted hepatocytes in rat liver plates occur by disruption of hepatic sinusoidal endothelium. Hepatology. 1999;29(2): 509-519.[10] Rajvanshi P, Kerr A, Bhargava KK, et al. Studies of liver repopulation using the dipeptidyl peptidase IV-deficient rat and other rodent recipients: cell size and structure relationships regulate capacity for increased transplanted hepatocyte mass in the liver lobule. Hepatology. 1996;23(3): 482-496.[11] Tirnitz-Parker JE, Tonkin JN, Knight B, et al. Isolation, culture and immortalisation of hepatic oval cells from adult mice fed a choline-deficient, ethionine-supplemented diet. Int J Biochem Cell Biol. 2007;39(12):2226-2239.[12] Tanaka M, Miyajima A. Identification and isolation of adult liver stem/progenitor cells. Methods Mol Biol. 2011;826:25-32.[13] Dolle L, Best J, Empsen C, et al. Successful isolation of liver progenitor cells by aldehyde dehydrogenase activity in naive mice. Hepatology. 2011;55(2):540-552.[14] Cheng K, Benten D, Bhargava K, et al. Hepatic targeting and biodistribution of human fetal liver stem/progenitor cells and adult hepatocytes in mice. Hepatology. 2009;50(4): 1194-1203.[15] Maganto P, Cienfuegos JA, Santamaria L, et al. Effect of ciclosporin on allogeneic hepatocyte transplantation: a morphological study. Eur Surg Res. 1988;20(4):248-253.[16] Chen L, Davis GJ, Crabb DW, et al. Intrasplenic transplantation of isolated periportal and perivenous hepatocytes as a long-term system for study of liver-specific gene expression. Hepatology. 1994;19(4):989-998.[17] Gupta S, Vemuru RP, Lee CD, et al. Hepatocytes exhibit superior transgene expression after transplantation into liver and spleen compared with peritoneal cavity or dorsal fat pad: implications for hepatic gene therapy. Hum Gene Ther. 1994; 5(8):959-967.[18] Li WL, Su J, Yao YC, et al. Isolation and characterization of bipotent liver progenitor cells from adult mouse. Stem Cells. 2006;24(2):322-332.[19] Martins PNA, Theruvath TP, Neuhaus P. Rodent models of partial hepatectomies. Liver Int. 2008;28(1):3-11.[20] Lambert JF, Benoit BO, Colvin GA, et al. Quick sex determination of mouse fetuses. J Neurosci Methods. 2000; 95(2):127-132.[21] Senior JR. Alanine aminotransferase: a clinical and regulatory tool for detecting liver injury-past, present, and future. Clin Pharmacol Ther. 92(3):332-339.[22] Lee WM, Squires RH Jr, Nyberg SL, et al. Acute liver failure: Summary of a workshop. Hepatology. 2008;47(4):1401-1415.[23] Zarrinpar A, Busuttil RW. Liver transplantation: past, present and future. Nat Rev Gastroenterol Hepatol. 2013;10(7): 434-440.[24] Michalopoulos GK. Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am J Pathol. 2010;176(1):2-13.[25] Zhang H, Liu Z, Li R, et al. Transplantation of embryonic small hepatocytes induces regeneration of injured liver in adult rat. Transplant Proc. 2009;41(9):3887-3892.[26] Mochizuki S, Kawashita Y, Eguchi S, et al. Liver repopulation by transplanted hepatocytes in a rat model of acute liver failure induced by carbon tetrachloride and a partial hepatectomy. Ann Transplant. 2010;15(4):49-55.[27] Farber E. Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylamino-fluorene, and 3'-methyl-4-dimethylaminoazobenzene. Cancer Res. 1956; 16(2):142-148.[28] Yasui O, Miura N, Terada K, et al. Isolation of oval cells from Long-Evans Cinnamon rats and their transformation into hepatocytes in vivo in the rat liver. Hepatology. 1997;25(2): 329-334.[29] Song S, Witek RP, Lu Y, et al. Ex vivo transduced liver progenitor cells as a platform for gene therapy in mice. Hepatology. 2004;40(4):918-924.[30] Oertel M, Shafritz DA. Stem cells, cell transplantation and liver repopulation. Biochim Biophys Acta. 2008;1782(2): 61-74.[31] Roskams TA, Theise ND, Balabaud C, et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology. 2004;39(6): 1739-1745.[32] Libbrecht L, Roskams T. Hepatic progenitor cells in human liver diseases. Semin Cell Dev Biol. 2002;13(6):389-396.[33] Ahmad TA. Study of the survival of hepatocytes transplanted to the spleen in rats. Hepatogastroenterology. 2011;58 (107-108): 892-895.[34] Fukuda K, Sugihara A, Nakasho K, et al. The origin of biliary ductular cells that appear in the spleen after transplantation of hepatocytes. Cell Transplant. 2004;13(1):27-33.[35] Nagata H, Ito M, Cai J, et al. Treatment of cirrhosis and liver failure in rats by hepatocyte xenotransplantation. Gastroenterology. 2003;124(2):422-431.[36] Ito H, Kamiya A, Ito K, et al. In vitro expansion and functional recovery of mature hepatocytes from mouse adult liver. Liver Int. 2012;32(4):592-601.[37] Takayama K, Kawabata K, Nagamoto Y, et al. 3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing. Biomaterials. 2012;34(7):1781-1789.[38] Wu K, Ding J, Chen C, et al. Hepatic transforming growth factor beta gives rise to tumor-initiating cells and promotes liver cancer development. Hepatology. 2012;56(6): 2255-2267.[39] Wang P, Cong M, Liu TH, et al. Primary isolated hepatic oval cells maintain progenitor cell phenotypes after two-year prolonged cultivation. J Hepatol. 2010;53(5):863-871.[40] Piscaglia AC, Shupe TD, Pani G, et al. Establishment of cancer cell lines from rat hepatocholangiocarcinoma and assessment of the role of granulocyte-colony stimulating factor and hepatocyte growth factor in their growth, motility and survival. J Hepatol. 2009;51(1):77-92. |
[1] | 朱 宁, 杨新明, 阮建伟. 雷公藤甲素干预脊髓损伤模型Thy-YFP转基因小鼠调节自噬及抑制细胞凋亡[J]. 中国组织工程研究, 2020, 24(在线): 1-. |
[2] | 廖 源, 屈萌艰, 刘 静, 钟培瑞, 曾亚华, 王 婷, 肖 豪, 李 兰, 刘丹妮, 杨 璐, 周 君. 超短波对大鼠急性肺损伤炎症反应的影响[J]. 中国组织工程研究, 2020, 24(在线): 2-. |
[3] | 孔德胜, 何晶晶, 冯宝峰, 郭瑞云, Asiamah Ernest Amponsah, 吕 飞, 张舒涵, 张晓琳, 马 隽, 崔慧先. 间充质干细胞修复大动物模型脊髓损伤疗效评价的Meta 分析[J]. 中国组织工程研究, 2020, 24(在线): 3-. |
[4] | 李啸群, 徐凯航, 纪 方. 补骨脂异黄酮抑制破骨细胞分化缓解小鼠去卵巢骨质疏松[J]. 中国组织工程研究, 2020, 24(在线): 4-. |
[5] | 张 霜, 徐晓梅, 曾 阳, 袁小平, 林富伟. 孤儿核受体Rev-erbα在小鼠骨髓间充质干细胞成骨分化中的作用[J]. 中国组织工程研究, 2020, 24(31): 4921-4926. |
[6] | 荀 翀, 王 强, 李长洲, 刘晓峰. 自体骨髓干细胞移植对脊髓损伤潜在分子靶点治疗机制的生物信息学分析[J]. 中国组织工程研究, 2020, 24(31): 4927-4933. |
[7] | 陈 佳, 杨艺强, 胡 晨, 陈 琦, 赵 恬, 雍 敏, 马东洋, 任利玲. 人骨髓间充质干细胞复合人脐静脉内皮细胞构建预血管化成骨细胞膜片[J]. 中国组织工程研究, 2020, 24(31): 4934-4940. |
[8] | 廖 健, 黄晓林, 周 倩, 霍 花, 齐昱晗, 伍 超, 石前会, 杨童景, 廖运茂, 梁 星. 煅烧骨/壳聚糖复合材料促进SD大鼠骨髓间充质干细胞的成骨分化[J]. 中国组织工程研究, 2020, 24(31): 4941-4947. |
[9] | 王国梁, 李彦林, 向耀宇, 贾 笛, 李灿章, 何 璐. 基质细胞衍生因子1诱导骨关节炎软骨细胞的miRNA表达谱分析[J]. 中国组织工程研究, 2020, 24(31): 4948-4953. |
[10] | 李园琦, 林 海, 罗红蓉, 张兴栋. 线粒体自噬与骨髓间充质干细胞成软骨分化的关联[J]. 中国组织工程研究, 2020, 24(31): 4954-4960. |
[11] | 刘 浩, 刘 军, 芮永军, 汤峰林, 陆 淼, 丁 涛. 成骨诱导因子Nell-1及Noggin短发卡RNA联合转染脂肪间充质干细胞的促成骨分化能力[J]. 中国组织工程研究, 2020, 24(31): 4966-4970. |
[12] | 伟人悦, 厉雪纯, 李 妍, 于 扬, 张 宇, 刘忠华. 无血清单层细胞诱导法培养猪诱导多能性干细胞定向分化为血管内皮细胞[J]. 中国组织工程研究, 2020, 24(31): 4971-4978. |
[13] | 谷遇伯, 张东亮, 苑 炜, 宋鲁杰. 脂肪干细胞外泌体可促进大鼠海绵体神经再生[J]. 中国组织工程研究, 2020, 24(31): 4979-4985. |
[14] | 郑海军, 晋 辉, 崔红玲, 朱亚坤, 曾 辉, 韩风杰, 邱翠婷, 刘 静. 药物涂层球囊与药物洗脱支架治疗老年2型糖尿病并冠状动脉小血管病变的安全性比较[J]. 中国组织工程研究, 2020, 24(28): 4573-4579. |
[15] | 马 超, 王辉山, 韩劲松, 尹宗涛, 张锡祾. 心脏瓣膜假体植入和外科消融迷宫手术治疗瓣膜病合并心房颤动[J]. 中国组织工程研究, 2020, 24(28): 4580-4587. |
设计:随机对照动物实验。
文章要点:旨在评估肝前体细胞移植对急性肝损伤的疗效及移植的肝前体细胞在脾脏实质内的定植与存活。
研究的创新与不足之处:在给与免疫抑制的环境下,尝试利用异种来源的肝前体细胞系肝上皮样前体细胞治疗急性肝损伤,并探索移植的肝上皮样前体细胞在大鼠脾脏实质内的定植与分化。不足之处:移植的肝上皮样前体细胞在大鼠肝脏内的定植与分化并未涉及;移植的肝上皮样前体细胞在脾脏微环境下向肝细胞分化的分子机制尚需进一步深入研究。
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||