[1]Gohel MS, Barwell JR, Taylor M, et al. Long Term results of compression therapy alone versus compression plus surgery in chronic venous ulceration (ESCHAR): randomised controlled trial. BMJ. 2007;335(7610):83. [2]Taheri SA, Schultz RO. Experimental prosthetic vein valve. long-term results. Angiology. 1995;46(4):299-303.[3]Hill R, Schmidt S, Evancho M, et al. Development of a prosthetic venous valve. J Biomed Mater Res.1985; 19(7): 827-832.[4]Pavcnik D, Uchida BT, Timmermans HA, et al. Percutaneous bioprosthetic venous valve: a long-term study in sheep. J Vasc Surg. 2002;35(3):598-602.[5]Teebken OE, Puschmann C, Aper T, et al. Tissue-engineered bioprosthetic venous valve: a long-term study in sheep. Eur J Vasc Endovasc Surg. 2003;25(4): 305-312.[6]Cho SW, Park HJ, Ryu JH, et al. Vascular patches tissue-engineered with autologous bone marrow-derived cells and decellularized tissue matrices. Biomaterials. 2005; 26(14):1915-1924.[7]Zhao Y, Zhang S, Zhou J, et al. The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells. Biomaterials. 2010;31(2):296-307.[8]The Ministry of Science and Technology of the People’s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30.[9]Gong Z, Niklason LE. Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (Hmscs). FASEB J. 2008;22(6):1635-1648.[10]Cho SW, Lim SH, Kim IK, et al. Small-diameter blood vessels engineered with bone marrow-derived cells. Ann Surg. 2005;241(3):506-515.[11]Teebken OE, Puschmann C, Breitenbach I, et al. Preclinical development of tissue-engineered vein valves and venous substitutes using re-endothelialised human vein matrix. Eur J Vasc Endovasc Surg. 2009;37(1):92-102.[12]Kabbani L, Escobar GA, Mansour F, et al. Longevity and outcomes of axillary valve transplantation for severe lower extremity chronic venous insufficiency. Ann Vasc Surg. 2011;25(4):496-501.[13]Akesson H, Risberg B, Björgell O. External support valvuloplasty in the treatment of chronic deep vein incompetence of the legs. Int Angiol. 1999;18(3): 233-238.[14]Maleti O, Perrin M. Reconstructive surgery for deep vein reflux in the lower limbs: techniques, results and indications. Eur J Vasc Endovasc Surg. 2011;41(6):837-848. [15]Pavcnik D, Uchida B, Kaufman J, et al. Percutaneous management of chronic deep venous reflux: review of experimental work and early clinical experience with bioprosthetic valve. Vasc Med. 2008;13(1):75-84. [16]Gale SS, Shuman S, Beebe HG, et al. Percutaneous venous valve bioprosthesis: initial observations. Vasc Endovascular Surg. 2004;38(3):221-224.[17]Wang Z, Zhang Z, Zhang JC, et al. Distribution of bone marrow stem cells in large porous polyester scaffolds. Chin Sci Bull. 2009;54(17):2968-2975.[18]Soletti L, Hong Y, Guan J, et al. A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomater. 2010;6(1):110-122. [19]Zhang WJ, Liu W, Cui L, et al. Tissue engineering of blood vessel. J Cell Mol Med. 2007;11(5):945-957.[20]Shao HJ, Chen CS, Lee IC, et al. Designing a three-dimensional expanded polytetrafluoroethylene- poly(lactic-co-glycolic acid) scaffold for tissue engineering. Artif Organs. 2009;33(4): 309-317. [21]Cancedda R, Giannoni P, Mastrogiacomo M. A Tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials. 2007;28(29): 4240-4250. [22]Ma Z, Gao C, Gong Y, et al. Paraffin spheres as porogen to fabricate poly(l-lactic acid) scaffolds with improved cytocompatibility for cartilage tissue engineering. J Biomed Mater Res B Appl Biomater. 2003;67(1):610-617.[23]Hu X, Shen H, Yang F, et al. Preparation and cell affinity of microtubular orientation-structured plga(70/30) blood vessel scaffold. Biomaterials. 2008;29(21):3128-3136.[24]Wu L, Zhang J, Jing D, et al. "Wet-State" mechanical properties of three-dimensional polyester porous scaffolds. J Biomed Mater Res A. 2006;76(2):264-271.[25]Xie S, Zhu Q, Wang B, et al. Incorporation of tripolyphosphate nanoparticles into fibrous poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials. 2010;31(19):5100-5109. [26]Leung L, Chan C, Baek S, et al. Comparison of morphology and mechanical properties of PLGA bioscaffolds. Biomed Mater. 2008;3(2):025006. [27]Oh SH, Kang SG, Kim ES, et al. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials. 2003;24(22):4011-4021.[28]O'Cearbhaill ED, Murphy M, Barry F, Et al. Behavior of human mesenchymal stem cells in fibrin-based vascular tissue engineering constructs. Ann Biomed Eng. 2010; 38(3):649-657. [29]Zhang L, Zhou J, Lu Q, et al. A Novel small-diameter vascular graft: in vivo behavior of biodegradable three-layered tubular scaffolds. Biotechnol Bioeng. 2008;99(4):1007-1015.[30]Hashi CK, Zhu Y, Yang GY, et al. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci U S A. 2007;104(29): 11915-11920. [31]Matsumura G, Miyagawa-Tomita S, Shin'oka T, et al. First Evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation. 2003;108(14):1729-1734. [32]O'Cearbhaill ED, Punchard MA, Murphy M, et al. Response of mesenchymal stem cells to the biomechanical environment of the endothelium on a flexible tubular silicone substrate. Biomaterials. 2008;29(11):1610-1619. 42(3):467-475. |