Chinese Journal of Tissue Engineering Research ›› 2026, Vol. 30 ›› Issue (4): 873-881.doi: 10.12307/2025.992
Previous Articles Next Articles
Zou Rongji1, Yu Fangfang2, Wang Maolin1, Jia Zhuopeng1
Received:
2024-08-29
Accepted:
2024-11-30
Online:
2026-02-08
Published:
2025-05-19
Contact:
Jia Zhuopeng, Master, Associate chief physician, Department of Neurosurgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an 710077, Shaanxi Province, China
About author:
Zou Rongji, Master, Attending physician, Department of Neurosurgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an 710077, Shaanxi Province, China
Yu Fangfang, Master, Attending physician, Department of Neurology, The First Affiliated Hospital of Xi’an Medical University, Xi’an 710077, Shaanxi Province, China
Zou Rongji and Yu Fangfang contributed equally to this work.
Supported by:
CLC Number:
Zou Rongji, Yu Fangfang, Wang Maolin, Jia Zhuopeng. Triptolide inhibits ferroptosis and improves cerebral ischemia-reperfusion injury in a rat model of cerebral artery occlusion/reperfusion[J]. Chinese Journal of Tissue Engineering Research, 2026, 30(4): 873-881.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 实验动物数量分析 实验最终选用造模成功及假手术组共60只SD大鼠,均无脱失,以每组20只进入结果分析。 2.2 雷公藤内酯酮提高了体外神经元细胞活力并抑制凋亡 CCK-8法检测雷公藤内酯酮作用于HT22细胞的最佳浓度,与未添加雷公藤内酯酮组相比,10 nmol/L和20 nmol/L的雷公藤内酯酮均能显著抑制HT22细胞活力(P < 0.01),而2.5 nmol/L和5 nmol/L雷公藤内酯酮对HT22细胞活力没有影响,见图1A。故为了排除药物毒性影响,后续研究使用5 nmol/L雷公藤内酯酮处理HT22细胞。与对照组比较,糖氧剥夺/复氧模型组中HT22细胞活力显著降低(P < 0.01);而相较于糖氧剥夺/复氧组,5 nmol/L雷公藤内酯酮可显著增加HT22细胞活力(P < 0.05),见图1B。流式细胞术分析结果显示糖氧剥夺/复氧模型组比对照组凋亡细胞比例显著升高(P < 0.01),而在应用雷公藤内酯酮后凋亡细胞比例较糖氧剥夺/复氧组显著下降(P < 0.01),见图1C,D。结果表明,雷公藤内酯酮能恢复HT22细胞活力,抑制糖氧剥夺/复氧诱导的HT22细胞凋亡。 2.3 雷公藤内酯酮激活TIGAR抑制HT22细胞铁死亡 CCK-8结果显示,与单独雷公藤内酯酮组比较,TIGAR敲低后HT22细胞活力显著降低(P < 0.01),见图2A。如图2B-I所示,Western blotting检测结果显示,与对照组相比,糖氧剥夺/复氧处理组TIGAR、GPX4和xCT表达水平降低(P < 0.01),谷胱甘肽表达水平降低,丙二醛以及亚铁离子水平升高(P < 0.01)。与糖氧剥夺/复氧处理组比较,糖氧剥夺/复氧+雷公藤内酯酮组的TIGAR、GPX4和xCT表达水平升高(P < 0.01),谷胱甘肽表达水平上升,丙二醛及亚铁离子表达水平下降(P < 0.01)。与糖氧剥夺/复氧+雷公藤内酯酮组相比,加入TIGAR-siRNA组GPX4和xCT的表达水平显著降低(P < 0.01),谷胱甘肽的表达降低(P < 0.01),丙二醛及亚铁离子水平升高(P < 0.01)。结果提示,雷公藤内酯酮能有效抑制糖氧剥夺/复氧条件下的HT22细胞铁死亡,其抑制效果依赖其对TIGAR的激活。 2.4 雷公藤内酯酮通过TIGAR激活HT22细胞中SPHK1/mTOR通路 如图3所示,相较于对照组,糖氧剥夺/复氧处理后SPHK1蛋白表达显著降低(P < 0.01),mTOR磷酸化水平显著降低(P < 0.01);糖氧剥夺/复氧+雷公藤内酯酮组与糖氧剥夺/复氧模型组对比,SPHK1蛋白表达水平及mTOR磷酸化水平均显著升高(P < 0.01);而敲低TIGAR后,与糖氧剥夺/复氧+雷公藤内酯酮比较,糖氧剥夺/复氧+雷公藤内酯酮+si-TIGAR组中SPHK1蛋白表达水平和mTOR磷酸化水平也均显著降低;与糖氧剥夺/复氧+雷公藤内酯酮+si-TIGAR组比较,糖氧剥夺/复氧+si-TIGAR组中SPHK1蛋白表达再次降低,mTOR磷酸化水平也显著降低(P < 0.05)。以上结果提示,雷公藤内酯酮能够通过上调TIGAR表达激活SPHK1/mTOR通路。 2.5 雷公藤内酯酮通过TIGAR/mTOR抑制HT22细胞铁死亡 如图4所示,应用雷公藤内酯酮和mTOR抑制剂雷帕霉素,共同处理糖氧剥夺/复氧条件下的HT22细胞。Western blotting检测结果显示,相较于糖氧剥夺/复氧组,糖氧剥夺/复氧+雷公藤内酯酮组中SPHK1的表达和mTOR磷酸化水平显著升高,而当雷帕霉素和雷公藤内酯酮共同处理HT22细胞后与单独雷公藤内酯酮组比较,SPHK1表达显著降低(P < 0.01),mTOR磷酸化水平也显著下降(P < 0.01)。此外,Western blotting检测结果显示相较于糖氧剥夺/复氧组,糖氧剥夺/复氧+雷公藤内酯酮组中GPX4和xCT表达水平均显著升高;而与糖氧剥夺/复氧+雷公藤内酯酮组相比,雷帕霉素和雷公藤内酯酮共同处理能够显著降低细胞中GPX4和xCT的表达水平(P < 0.01)。ELISA检测雷帕霉素和雷公藤内酯酮处理的HT22细胞上清液中丙二醛和谷胱甘肽的含量,结果显示,相较于糖氧剥夺/复氧组,糖氧剥夺/复氧+雷公藤内酯酮组升高了谷胱甘肽含量,降低了丙二醛含量和亚铁离子水平,然而与糖氧剥夺/复氧+雷公藤内酯酮组比较,与雷帕霉素联合使用降低了谷胱甘肽的含量(P < 0.01),升高丙二醛含量(P < 0.01)和亚铁离子水平(P < 0.05)。结果提示,雷公藤内酯酮激活mTOR磷酸化,这与其抑制糖氧剥夺/复氧条件下HT22细胞铁死亡有关。 2.6 雷公藤内酯酮对缺血再灌注大鼠的神经保护作用 假手术组大鼠未出现任何神经功能缺损。与假手术组相比,模型组表现出明显的神经功能缺损,提示有严重的神经损伤。雷公藤内酯酮对模型大鼠神经功能缺损的治疗作用显著(P < 0.01),见图5A。此外,与假手术组大鼠相比,模型组大鼠脑梗死体积显著增加,雷公藤内酯酮治疗有效降低了模型组大鼠的脑梗死体积(P < 0.01),见图5B,C。如图5C所示,模型组手术完成即刻,缺血侧血流量明显下降,再灌注后血流有所恢复,表明大鼠脑缺血再灌注模型建立成功。此外,TUNEL染色显示,与假手术组大鼠相比,模型组大鼠的脑组织中细胞凋亡加重(P < 0.01);雷公藤内酯酮治疗后,模型组大鼠凋亡细胞数量明显减少(P < 0.01),见图5D,E。 上述结果表明,雷公藤内酯酮治疗可减轻大鼠脑缺血再灌注损伤。Western blotting检测脑组织中SPHK1、p-mTOR、mTOR、GPX4蛋白表达水平,结果显示,模型组大鼠中SPHK1、p-mTOR/mTOR和GPX4水平显著降低;在雷公藤内酯酮处理后,模型组大鼠中SHKP1表达水平和mTOR的磷酸化水平升高(P < 0.01),铁死亡相关蛋白GPX4表达水平上升(P < 0.01),见图5F-I。这些数据表明,雷公藤内酯酮治疗可减轻大鼠脑缺血再灌注损伤。"
[1] CAMPBELL BC. Hyperacute ischemic stroke care-Current treatment and future directions. Int J Stroke. 2024;19(7):718-726. [2] CHEN H, LEE JS, MICHEL P, et al. Endovascular Stroke Thrombectomy for Patients With Large Ischemic Core: A Review. JAMA Neurol. 2024; 81(10):1085-1093. [3] LIU X, XIE C, WANG Y, et al. Ferritinophagy and Ferroptosis in Cerebral Ischemia Reperfusion Injury. Neurochem Res. 2024;49(8):1965-1979. [4] BARANOVICOVA E, KALENSKA D, KAPLAN P, et al. Blood and Brain Metabolites after Cerebral Ischemia. Int J Mol Sci. 2023;24(24):17302. [5] WANG Y, NIU H, LI L, et al. Anti-CHAC1 exosomes for nose-to-brain delivery of miR-760-3p in cerebral ischemia/reperfusion injury mice inhibiting neuron ferroptosis. J Nanobiotechnol. 2023;21(1):109. [6] LIU H, ZHAO Z, YAN M, et al. Calycosin decreases cerebral ischemia/reperfusion injury by suppressing ACSL4-dependent ferroptosis. Arch Biochem Biophys. 2023;734:109488. [7] LIU H, ZHANG TA, ZHANG WY, et al. Rhein attenuates cerebral ischemia-reperfusion injury via inhibition of ferroptosis through NRF2/SLC7A11/GPX4 pathway. Exp Neurol. 2023;369:114541. [8] LIU X, DU Y, LIU J, et al. Ferrostatin-1 alleviates cerebral ischemia/reperfusion injury through activation of the AKT/GSK3β signaling pathway. Brain res bull. 2023;193:146-157. [9] HUANG B, LANG X, LI X. The role of TIGAR in nervous system diseases. Front Aging Neurosci. 2022;14:1023161. [10] WANG X, LI M, WANG F, et al. TIGAR reduces neuronal ferroptosis by inhibiting succinate dehydrogenase activity in cerebral ischemia. Free Radic Biol Med. 2024;216:89-105. [11] TAN QL, ZHANG MX, YAO DH, et al. TIGAR Protects Against Adenine-Induced Ferroptosis in Human Proximal Tubular Epithelial Cells by Activating the mTOR/S6KP70 Axis. Nutr Cancer. 2023;75(6):1464-1472. [12] LI M, LUO Q, CHEN X, et al. Screening of major hepatotoxic components of Tripterygium wilfordii based on hepatotoxic injury patterns. BMC Complement Med Ther. 2023;23(1):9. [13] SONG J, HE GN, DAI L. A comprehensive review on celastrol, triptolide and triptonide: Insights on their pharmacological activity, toxicity, combination therapy, new dosage form and novel drug delivery routes. Biomed Pharmacother. 2023;162:114705. [14] LI Z, GENG Y, WU Q, et al. Triptonide, a Diterpenoid Displayed Anti-Inflammation, Antinociceptive, and Anti-Asthmatic Efficacy in Ovalbumin-Induced Mouse Model. Appl Biochem Biotechnol. 2023; 195(3):1736-1751. [15] LI J, LI J, CAO Y, et al. Triptonide protects retinal cells from oxidative damage via activation of Nrf2 signaling. Int J Mol Med. 2024;54(3): doi: 10.3892/ijmm.2024.5400. [16] ZHANG H, LI H, XUE J, et al. New facile enantio- and diastereo-selective syntheses of (-)-triptonide and (-)-triptolide. Org Biomol Chem. 2014; 12(5):732-736. [17] ZHOU J, YE W, CHEN L, et al. Triptolide alleviates cerebral ischemia/reperfusion injury via regulating the Fractalkine/CX3CR1 signaling pathway. Brain Res Bull. 2024;211:110939. [18] ZHENG Z, YAN G, XI N, et al. Triptolide Induces Apoptosis and Autophagy in Cutaneous Squamous Cell Carcinoma via Akt/mTOR Pathway. Anticancer Agents Med Chem. 2023;23(13):1596-1604. [19] XIE J, ZHANG T, LI P, et al. Dihydromyricetin Attenuates Cerebral Ischemia Reperfusion Injury by Inhibiting SPHK1/mTOR Signaling and Targeting Ferroptosis. Drug Des Devel Ther. 2022;16:3071-3085. [20] GARGALIONIS AN, PAPAVASSILIOU KA, PAPAVASSILIOU AG. mTOR Signaling: Recent Progress. Int J Mol Sci. 2024;25(5): doi: 10.3390/ijms25052587. [21] LI Y, CHEN T, XUE Y, et al. DJ-1 inhibits ferroptosis in cerebral ischemia-reperfusion via ATF4/HSPA5 pathway. Neurochem Int. 2023;171: 105628. [22] LONGA EZ, WEINSTEIN PR, CARLSON S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1): 84-91. [23] LI H, HUI L, XU W, et al. Triptolide modulates the sensitivity of K562/A02 cells to adriamycin by regulating miR-21 expression. Pharm Biol. 2012;50(10):1233-1240. [24] XU Y, WANG P, LI M, et al. Natural small molecule triptonide inhibits lethal acute myeloid leukemia with FLT3-ITD mutation by targeting Hedgehog/FLT3 signaling. Biomed Pharmacother. 2021;133:111054. [25] CHEN JX, LI L, CANTRELL AC, et al. High Glucose Activates Prolyl Hydroxylases and Disrupts HIF-α Signaling via the P53/TIGAR Pathway in Cardiomyocyte. Cells. 2023;12(7): doi: 10.3390/cells12071060. [26] TOSHIDA K, ITOH S, ISEDA N, et al. Impact of TP53-induced glycolysis and apoptosis regulator on malignant activity and resistance to ferroptosis in intrahepatic cholangiocarcinoma. Cancer Sci. 2024; 115(1):170-183. [27] TANG J, CHEN L, QIN ZH, et al. Structure, regulation, and biological functions of TIGAR and its role in diseases. Acta Pharmacol Sin. 2021; 42(10):1547-1555. [28] ZHANG T, LINGHU KG, TAN J, et al. TIGAR exacerbates obesity by triggering LRRK2-mediated defects in macroautophagy and chaperone-mediated autophagy in adipocytes. Autophagy. 2024;20(8):1741-1761. [29] ZHANG DM, ZHANG T, WANG MM, et al. TIGAR alleviates ischemia/reperfusion-induced autophagy and ischemic brain injury. Free Radic Biol Med. 2019;137:13-23. [30] LIU M, ZHOU X, LI Y, et al. TIGAR alleviates oxidative stress in brain with extended ischemia via a pentose phosphate pathway-independent manner. Redox Biol. 2022;53:102323. [31] LIU MY, LI HM, WANG XY, et al. TIGAR drives colorectal cancer ferroptosis resistance through ROS/AMPK/SCD1 pathway. Free Radic Biol Med. 2022;182:219-231. [32] TAN QL, ZHANG MX, YAO DH, et al. TIGAR Protects Against Adenine-Induced Ferroptosis in Human Proximal Tubular Epithelial Cells by Activating the mTOR/S6KP70 Axis. Nutr Cancer. 2023;75(6):1464-1472. [33] SI J, LIU B, QI K, et al. Tanshinone IIA inhibited intermittent hypoxia induced neuronal injury through promoting autophagy via AMPK-mTOR signaling pathway. J Ethnopharmacol. 2023;315:116677. [34] ZHAO T, FAN J, ABU-ZAID A, et al. Nuclear mTOR Signaling Orchestrates Transcriptional Programs Underlying Cellular Growth and Metabolism. Cells. 2024;13(9): doi: 10.3390/cells13090781. [35] LOTFIMEHR H, MARDI N, NARIMANI S, et al. mTOR signalling pathway in stem cell bioactivities and angiogenesis potential. Cell Prolif. 2023; 56(12):e13499. [36] DAVOODY S, ASGARI TAEI A, KHODABAKHSH P, et al. mTOR signaling and Alzheimer’s disease: What we know and where we are? CNS Neurosci Ther. 2024;30(4):e14463. [37] LIU X, GUO B, LI Q, et al. mTOR in metabolic homeostasis and disease. Exp Cell Res. 2024;441(2):114173. [38] LI Y, GAO J, LIU C, et al. USP22 knockdown protects against cerebral ischemia/reperfusion injury via destabilizing PTEN protein and activating the mTOR/TFEB pathway. Naunyn Schmiedebergs Arch Pharmacol. 2023;396(11):3163-3175. [39] SEKHAR KR, HANNA DN, CYR S, et al. Glutathione peroxidase 4 inhibition induces ferroptosis and mTOR pathway suppression in thyroid cancer. Sci Rep. 2022;12(1):19396. [40] XIE Y, ZHAO G, LEI X, et al. Advances in the regulatory mechanisms of mTOR in necroptosis. Front Immunol. 2023;14:1297408. [41] YANG Y, WU Q, SHAN X, et al. Ginkgolide B attenuates cerebral ischemia-reperfusion injury via inhibition of ferroptosis through disrupting NCOA4-FTH1 interaction. J Ethnopharmacol. 2024;318(Pt B): 116982. [42] HU S, FEI Y, JIN C, et al. Ginsenoside Rd enhances blood-brain barrier integrity after cerebral ischemia/reperfusion by alleviating endothelial cells ferroptosis via activation of NRG1/ErbB4-mediated PI3K/Akt/mTOR signaling pathway. Neuropharmacology. 2024;251:109929. |
[1] | Lyu Guoqing, Aizimaitijiang·Rouzi, Xiong Daohai. Irisin inhibits ferroptosis in human articular chondrocytes: roles and mechanisms [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(6): 1359-1367. |
[2] | Pan Hongfei, Zhuang Zhenbing, Xu Baiyun, Yang Zhangyang, Lin Kairui, Zhan Bingqing, Lan Jinghan, Gao Heng, Zhang Nanbo, Lin Jiayu. Inhibitory effects of different concentrations of auranofin on M1 macrophage function and its therapeutic potential in diabetic wound healing [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(6): 1390-1397. |
[3] | Peng Zhiwei, Chen Lei, Tong Lei. Luteolin promotes wound healing in diabetic mice: roles and mechanisms [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(6): 1398-1406. |
[4] | Sun Yajie, Zhao Xinchen, Bo Shuangling. Spatiotemporal expression of bone morphologic protein 7 in mouse kidney development [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(5): 1156-1161. |
[5] | Li Haojing, Wang Xin, Song Chenglin, Zhang Shengnan, Chen Yunxin. Therapeutic efficacy of extracorporeal shock wave therapy in the upper trapezius muscle area combined with exercise control training in patients with chronic non-specific neck pain [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(5): 1162-1170. |
[6] | Liu Yu, Lei Senlin, Zhou Jintao, Liu Hui, Li Xianhui. Mechanisms by which aerobic and resistance exercises improve obesity-related cognitive impairment [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(5): 1171-1183. |
[7] | Yu Huifen, Mo Licun, Cheng Leping. The position and role of 5-hydroxytryptamine in the repair of tissue injury [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(5): 1196-1206. |
[8] | Wang Zhengye, Liu Wanlin, Zhao Zhenqun. Advance in the mechanisms underlying miRNAs in steroid-induced osteonecrosis of the femoral head [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(5): 1207-1214. |
[9] | Bu Yangyang, Ning Xinli, Zhao Chen. Intra-articular injections for the treatment of osteoarthritis of the temporomandibular joint: different drugs with multiple combined treatment options [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(5): 1215-1224. |
[10] | Wen Fan, Xiang Yang, Zhu Huan, Tuo Yanfang, Li Feng. Exercise improves microvascular function in patients with type 2 diabetes [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(5): 1225-1235. |
[11] | Liu Xinyue, Li Chunnian, Li Yizhuo, Xu Shifang. Regeneration and repair of oral alveolar bone defects [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(5): 1247-1259. |
[12] | Leng Xiaoxuan, Zhao Yuxin, Liu Xihua. Effects of different neuromodulatory stimulation modalities on non-motor symptoms in Parkinson’s patients: a network meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(5): 1282-1293. |
[13] | Wen Xiaolong, Weng Xiquan, Feng Yao, Cao Wenyan, Liu Yuqian, Wang Haitao. Effects of inflammation on serum hepcidin and iron metabolism related parameters in patients with type 2 diabetes mellitus: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(5): 1294-1301. |
[14] | Yang Zeyu, Zhi Liang, Wang Jia, Zhang Jingyi, Zhang Qingfang, Wang Yulong, Long Jianjun. A visualized analysis of research hotspots in high-frequency repetitive transcranial magnetic stimulation from the macroscopic perspective [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(5): 1320-1330. |
[15] | Yang Zhijie, Zhao Rui, Yang Haolin, Li Xiaoyun, Li Yangbo, Huang Jiachun, Lin Yanping, Wan Lei, HuangHongxing. Postmenopausal osteoporosis: predictive values of muscle mass, grip strength, and appendicular skeletal muscle index [J]. Chinese Journal of Tissue Engineering Research, 2026, 30(5): 1073-1080. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||