Chinese Journal of Tissue Engineering Research ›› 2024, Vol. 28 ›› Issue (21): 3313-3318.doi: 10.12307/2024.085
Previous Articles Next Articles
Yang Fangjun, Wang Fuyang, Su Yun, Wang Yongze, Yang Cunheng, Wang Tienan
Received:
2023-04-18
Accepted:
2023-06-05
Online:
2024-07-28
Published:
2023-09-27
Contact:
Wang Tienan, Professor, Chief physician, Department of Orthopedics, Zhongshan Hospital Affiliated to Dalian University, Dalian 116001, Liaoning Province, China
About author:
Yang Fangjun, Master candidate, Department of Orthopedics, Zhongshan Hospital Affiliated to Dalian University, Dalian 116001, Liaoning Province, China
CLC Number:
Yang Fangjun, Wang Fuyang, Su Yun, Wang Yongze, Yang Cunheng, Wang Tienan. Finite element analysis of intramedullary nail and locking plate fixation for proximal humeral fractures[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(21): 3313-3318.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.1 肱骨的应力、位移分布云图结果 应用有限元方法分析在相同力学加载条件下的4组内固定模型,观察各组肱骨的应力、位移分布及其最大值,其中A组肱骨的最大应力及最大位移值最小,为41.234 MPa、0.159 mm;D组肱骨的最大应力及最大位移值最大,为57.606 MPa、0.283 mm。在骨折类型相同的条件下,锁定钢板组中肱骨的最大应力及最大位移值均大于髓内钉组,且两者应力分布范围不同,锁定钢板组应力主要集中在肱骨头内侧下方及螺钉孔区域,而髓内钉组应力主要集中在骨折线周围及肱骨外科颈外侧下方区域,两者位移分布无明显差异,主要集中在肱骨远端。在内固定物相同的条件下,相比于三部分骨折,两部分骨折肱骨最大应力及位移值更小。见表3及图3,4。"
[1] RYBICKI EF, SIMONEN FA, WEIS EB JR. On the mathematical analysis of stress in the human femur. J Biomech. 1972;5(2):203-215. [2] LEINO OK, LEHTIMAKI KK, MAKELA K, et al. Proximal humeral fractures in Finland : trends in the incidence and methods of treatment between 1997 and 2019. Bone Joint J. 2022;104-B(1):150-156. [3] NEER CS 2ND. Displaced proximal humeral fractures. I. Classification and evaluation. J Bone Joint Surg Am. 1970;52(6):1077-1089. [4] VARGA P, INZANA J, FLETCHER J, et al. Cement augmentation of calcar screws may provide the greatest reduction in predicted screw cut-out risk for proximal humerus plating based on validated parametric computational modelling: Augmenting proximal humerus fracture plating. Bone Joint Res. 2020;9(9):534-542. [5] LAUX C, GRUBHOFER F, WERNER C, et al. Current concepts in locking plate fixation of proximal humerus fractures. J Orthop Surg Res. 2017; 12(1):137. [6] SUN Q, WU X, WANG L, et al. The plate fixation strategy of complex proximal humeral fractures. Int Orthop. 2020;44(9):1785-1795. [7] GRACITELLI ME, MALAVOLTA EA, ASSUNCAO JH, et al. Locking intramedullary nails compared with locking plates for two- and three-part proximal humeral surgical neck fractures: a randomized controlled trial. J Shoulder Elbow Surg. 2016;25(5):695-703. [8] BOYER P, COUFFIGNAL C, BAHMAN M, et al. Displaced three and four part proximal humeral fractures: prospective controlled randomized open-label two-arm study comparing intramedullary nailing and locking plate. Int Orthop. 2021;45(11):2917-2926. [9] SHI X, LIU H, XING R, et al. Effect of intramedullary nail and locking plate in the treatment of proximal humerus fracture: an update systematic review and meta-analysis. J Orthop Surg Res. 2019;14(1):285. [10] GUO Z, SANG L, MENG Q, et al. Comparison of surgical efficacy of locking plates and interlocking intramedullary nails in the treatment of proximal humerus fractures. J Orthop Surg Res. 2022;17(1):481. [11] GRADL G, STEDTFELD HW, MORLOCK M, et al. Locking plate fixation of humeral head fractures with a telescoping screw. A comparative biomechanical study versus a standard plate. Injury. 2012;43(6):734-738. [12] AL-JAHWARI A, SCHEMITSCH EH, WUNDER JS, et al. The biomechanical effect of torsion on humeral shaft repair techniques for completed pathological fractures. J Biomech Eng. 2012;134(2):024501. [13] RODERER G, BRIANZA S, SCHIUMA D, et al. Mechanical assessment of local bone quality to predict failure of locked plating in a proximal humerus fracture model. Orthopedics. 2013;36(9):e1134-e1140. [14] WIRTH AJ, MULLER R, VAN LENTHE GH. The discrete nature of trabecular bone microarchitecture affects implant stability. J Biomech. 2012;45(6):1060-1067. [15] LIN F, YAO T, WANG C, et al. [FE modeling and analysis of the locking plate for proximal humerus fracture]. Zhongguo Yi Liao Qi Xie Za Zhi. 2013;37(2):84-87. [16] MURDOCH AH, SHEPHERD DE, MATHIAS KJ, et al. Design of a retractable intramedullary nail for the humerus. Biomed Mater Eng, 2003;13(3):297-307. [17] MALDONADO ZM, SEEBECK J, HELLER MO, et al. Straining of the intact and fractured proximal humerus under physiological-like loading. J Biomech. 2003;36(12):1865-1873. [18] CLAVERT P, ZERAH M, KRIER J, et al. Finite element analysis of the strain distribution in the humeral head tubercles during abduction: comparison of young and osteoporotic bone. Surg Radiol Anat. 2006; 28(6):581-587. [19] WIRTH AJ, GOLDHAHN J, FLAIG C, et al. Implant stability is affected by local bone microstructural quality. Bone. 2011;49(3):473-478. [20] WIRTH AJ, MULLER R, VAN LENTHE GH. Augmentation of peri-implant bone improves implant stability: quantification using simulated bone loss. J Orthop Res. 2012;30(2):178-184. [21] SCHLIEMANN B, SEIFERT R, THEISEN C, et al. PEEK versus titanium locking plates for proximal humerus fracture fixation: a comparative biomechanical study in two- and three-part fractures. Arch Orthop Trauma Surg. 2017;137(1):63-71. [22] SCHLIEMANN B, SEIFERT R, ROSSLENBROICH SB, et al. Screw augmentation reduces motion at the bone-implant interface: a biomechanical study of locking plate fixation of proximal humeral fractures. J Shoulder Elbow Surg. 2015;24(12):1968-1973. [23] RODERER G, SCOLA A, SCHMOLZ W, et al. Biomechanical in vitro assessment of screw augmentation in locked plating of proximal humerus fractures. Injury. 2013;44(10):1327-1332. [24] LIANG D, YE LQ, JIANG XB, et al. Biomechanical effects of cement distribution in the fractured area on osteoporotic vertebral compression fractures: a three-dimensional finite element analysis. J Surg Res. 2015;195(1):246-256. [25] HE Y, HE J, WANG F, et al. Application of Additional Medial Plate in Treatment of Proximal Humeral Fractures With Unstable Medial Column: A Finite Element Study and Clinical Practice. Medicine. 2015, 94(41):e1775. [26] 何仿, 李苏皖, 林昊, 等. 间接暴力所致肱骨骨折机制的三维有限元模拟[J]. 中国矫形外科杂志,2008,16(8):613-616. [27] MÜLLER F, DOBLINGER M, ECKSTEIN C, et al. The PHILOS plate-also an indication for osteosynthesis of the distal tibia?. Der Unfallchirurg. 2020;123(4):326-329. [28] JIA Z, LI C, LIN J, et al. Clinical effect of using MultiLoc® nails to treat four-part proximal humeral fractures. J Int Med Res. 2020;48(12): 300060520979212. [29] EDWARDS S, WILSON N, ZHANG L, et al. Two-part surgical neck fractures of the proximal part of the humerus. A biomechanical evaluation of two fixation techniques. J Bone Joint Surg Am. 2006; 88(10):2258-2264. [30] FORURIA A, DE GRACIA M, LARSON D, et al. The pattern of the fracture and displacement of the fragments predict the outcome in proximal humeral fractures. J Bone Joint Surg Br. 2011;93(3):378-386. [31] LILL H, HEPP P, KORNER J, et al. Proximal humeral fractures: how stiff should an implant be? A comparative mechanical study with new implants in human specimens. Arch Orthop Trauma Surg. 2003;123: 74-81. [32] FÜCHTMEIER B, MAY R, HENTE R, et al. Proximal humerus fractures: a comparative biomechanical analysis of intra and extramedullary implants. Arch Orthop Trauma Surg. 2007;127(6):441-447. [33] KITSON J, BOOTH G, DAY R. A biomechanical comparison of locking plate and locking nail implants used for fractures of the proximal humerus. J Shoulder Elbow Surg. 2007;16(3):362-366. [34] YOON R, DZIADOSZ D, PORTER D, et al. A comprehensive update on current fixation options for two-part proximal humerus fractures: a biomechanical investigation. Injury. 2014;45(3):510-514. [35] HESSMANN M, HANSEN W, KRUMMENAUER F, et al. Locked plate fixation and intramedullary nailing for proximal humerus fractures: a biomechanical evaluation. J Trauma. 2005;58(6):1194-1201. [36] FLETCHER JWA, WINDOLF M, RICHARDS RG, et al. Importance of locking plate positioning in proximal humeral fractures as predicted by computer simulations. J Orthop Res. 2019;37(4):957-964. [37] 冷昆鹏, 王艳华, 陈建海, 等. 肱骨近端三维有限元模型的建立与生物力学分析[J]. 中华创伤骨科杂志,2015,17(4):326-330. [38] KIM H, LEE W, CHOI S, et al. Role of Additional Inferomedial Supporting Screws in Osteoporotic 3-Part Proximal Humerus Fracture: Finite Element Analysis. Geriatr Orthop Surg Rehabil. 2020;11: 2151459320956958. [39] LEE JS, KIM JH, KIM KG, et al. Effect of Calcar Screw in Locking Compression Plate System for Osteoporotic Proximal Humerus Fracture: A Finite Element Analysis Study. Biomed Res Int. 2022;2022: 1268774. [40] FEERICK EM, KENNEDY J, MULLETT H, et al. Investigation of metallic and carbon fibre PEEK fracture fixation devices for three-part proximal humeral fractures. Med Eng Phys. 2013;35(6):712-722. [41] CHEN YN, CHANG CW, LIN CW, et al. Numerical investigation of fracture impaction in proximal humeral fracture fixation with locking plate and intramedullary nail. Int Orthop. 2017;41(7):1471-1480. [42] GIUDICE F, LA ROSA G, RUSSO T, et al. Evaluation and improvement of the efficiency of the Seidel humeral nail by numerical-experimental analysis of the bone-implant contact. Med Eng Phys. 2006;28(7):682-693. |
[1] | Li Zhifei, Yang Yin, Chen Hualong, Liang Qinqiu, Zhong Yuanming, Zhang Yisheng. Finite element analysis of the correlation between tilt angle of titanium cage and postoperative subsidence of titanium cage after anterior subtotal cervical corpectomy, decompression and fusion [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1313-1319. |
[2] | Chen Mengmeng, Bao Li, Chen Hao, Jia Pu, Feng Fei, Shi Guan, Tang Hai. Biomechanical characteristics of a novel interspinous distraction fusion device BacFuse for the repair of lumbar degenerative disease [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1325-1329. |
[3] | Liang Cheng, Zhang Linqi, Wang Guan, Li Wen, Duan Ke, Li Zhong, Lu Xiaobo, Zhuo Naiqiang. Finite element and biomechanical analysis of different implants in repair for unilateral unstable pelvic posterior ring injury [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1336-1341. |
[4] | Yang Junliang, Lu Tan, Xu Biao, Jiang Yaqiong, Wang Fucheng. Three-dimensional finite element analysis of effects of partial anterior cruciate ligament rupture on knee joint stress [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1347-1353. |
[5] | Weng Rui, Lin Dongxin, Guo Haiwei, Zhang Wensheng, Song Yuke, Lin Hongheng, Li Wenchao, Ye Linqiang. Abnormal types of intervertebral disc structure and related mechanical loading with biomechanical factors [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1436-1442. |
[6] | Xiaheida·Yilaerjiang, Nijiati·Tuerxun, Reyila·Kuerban, Baibujiafu·Yelisi, Chen Xin. Three-dimensional finite element analysis of the distribution pattern of stress in bone tissues with different characteristics [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(8): 1277-1282. |
[7] | Xue Xiaofeng, Wei Yongkang, Qiao Xiaohong, Du Yuyong, Niu Jianjun, Ren Lixin, Yang Huifeng, Zhang Zhimin, Guo Yuan, Chen Weiyi. Finite element analysis of osteoporosis in proximal femur after cannulated screw fixation for femoral neck fracture [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 862-867. |
[8] | Huang Peizhen, Dong Hang, Cai Qunbin, Lin Ziling, Huang Feng. Finite element analysis of anterograde and retrograde intramedullary nail for different areas of femoral shaft fractures [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 868-872. |
[9] | Wang Mingming, Zhang Zhong, Sun Jianhua, Zhao Gang, Song Hua, Yan Huadong, Lyu Bin. Finite element analysis of three different minimally invasive fixation methods for distal tibial fractures with soft tissue injury [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 879-885. |
[10] | Hou Zexin, Xu Benke, Dai Yuan, He Chuan, Zhang Chaoju, Li Xiaolin. Finite element analysis of the mechanism of dorsiflexion injury of wrist joint in elderly people after falls [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 886-890. |
[11] | Ning Tianliang, Wang Kun, Wang Lingbiao, Han Pengfei. Finite element analysis on correction effect of varus foot orthosis based on the three-point force principle [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 891-899. |
[12] | Zhang Lili, Zhang Xinglai, Zhang Jie, Zheng Jiejiao. Effect of visual feedback on landing biomechanics in chronic ankle instability patients [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 900-904. |
[13] | Wang Qiang, Li Shiyun, Xiong Ying, Li Tiantian. Biomechanical changes of the cervical spine in internal fixation with different anterior cervical interbody fusion systems [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 821-826. |
[14] | Wei Yuanbiao, Lin Zhan, Chen Yanmei, Yang Tenghui, Zhao Xiao, Chen Yangsheng, Zhou Yanhui, Yang Minchao, Huang Feiqi. Finite element analysis of effects of sagittal cervical manipulation on intervertebral disc and facet joints [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 827-832. |
[15] | Zhang Rui, Wang Kun, Shen Zicong, Mao Lu, Wu Xiaotao. Effects of endoscopic foraminoplasty and laminoplasty on biomechanical properties of intervertebral disc and isthmus [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 833-839. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||