[1] GRÄSSEL SG. The role of peripheral nerve fibers and their neurotransmitters in cartilage and bone physiology and pathophysiology. Arthritis Res Ther. 2014;16(6):485.
[2] LI J, KREICBERGS A, BERGSTRÖM J, et al. Site-specific CGRP innervation coincides with bone formation during fracture healing and modeling: A study in rat angulated tibia. J Orthop Res. 2007; 25(9):1204-1212.
[3] 康庆林,孔令驰,李刚.Ilizarov技术基础研究进展[J].中华骨科杂志,2021,41(11):714-719.
[4] BURROUGHS PJ, KAHAN JB, MORAN J, et al. Subsequent Surgery Up to 10 Years After Osteochondral Allograft and Osteochondral Autograft: An Analysis of More Than 2000 Patients. Orthop J Sports Med. 2022; 10(12):23259671221139127.
[5] SONG D, JIANG X, ZHU S, et al. Denervation impairs bone regeneration during distraction osteogenesis in rabbit tibia lengthening. Acta Orthop. 2012;83(4):406-410.
[6] CAO Z, ZHANG Y, LIPA K, et al. Ilizarov Bone Transfer for Treatment of Large Tibial Bone Defects: Clinical Results and Management of Complications. J Pers Med. 2022;12(11):1774.
[7] KAYA Y, SARIKCIOGLU L. Sir Herbert Seddon (1903-1977) and his classification scheme for peripheral nerve injury. Childs Nerv Syst. 2015;31(2):177-180.
[8] DEMІREL M, AKGüL T, POLAT G, et al. Autologous segmental tibia bone transfer in the treatment of distal tibia Gustilo-Anderson type-III open fracture: A case report. Int J Surg Case Rep. 2016;27:113-118.
[9] ERALP L, KOCAOĞLU M, OZKAN K, et al. A comparison of two osteotomy techniques for tibial lengthening. Arch Orthop Trauma Surg. 2004;124(5):298-300.
[10] SU P, WANG S, LAI Y, et al. Screw Analysis, Modeling and Experiment on the Mechanics of Tibia Orthopedic with the Ilizarov External Fixator. Micromachines (Basel). 2022;13(6):932.
[11] PALEY D, MAAR DC. Ilizarov bone transport treatment for tibial defects. J Orthop Trauma. 2000;14(2):76-85.
[12] PALEY D. Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop Relat Res. 1990;(250):81-104.
[13] AKTUGLU K, EROL K, VAHABI A. Ilizarov bone transport and treatment of critical-sized tibial bone defects: a narrative review. J Orthop Traumatol. 2019;20(1):22.
[14] WEN H, YANG H, XU Y. Extreme bone lengthening by bone transport with a unifocal tibial corticotomy: a case report. BMC Musculoskelet Disord. 2019;20(1):555.
[15] THANIK VD, ABDOU SA. Reply: Free Tissue Transfer with Distraction Osteogenesis and Masquelet Technique Is Effective for Limb Salvage in Patients with Gustilo Type IIIB Open Fractures. Plast Reconstr Surg. 2021;148(5):854e.
[16] LERNER UH, PERSSON E. Osteotropic effects by the neuropeptides calcitonin gene-related peptide, substance P and vasoactive intestinal peptide. J Musculoskelet Neuronal Interact. 2008;8(2):154-165.
[17] HUKKANEN M, KONTTINEN YT, SANTAVIRTA S, et al. Rapid proliferation of calcitonin gene-related peptide-immunoreactive nerves during healing of rat tibial fracture suggests neural involvement in bone growth and remodelling. Neuroscience. 1993;54(4):969-979.
[18] TOMLINSON RE, LI Z, ZHANG Q, et al. NGF-TrkA Signaling by Sensory Nerves Coordinates the Vascularization and Ossification of Developing Endochondral Bone. Cell Rep. 2016;16(10):2723-2735.
[19] HURRELL DJ. The Nerve Supply of Bone. J Anat. 1937;72(Pt 1): 54-61.
[20] MOGI M, KONDO A, KINPARA K, et al. Anti-apoptotic action of nerve growth factor in mouse osteoblastic cell line. Life Sci. 2000;67(10): 1197-1206.
[21] WU Y, AI H, ZOU Y, et al. Osteoclast-derived extracellular miR-106a-5p promotes osteogenic differentiation and facilitates bone defect healing. Cell Signal. 2023;102:110549.
[22] CAO J, WANG L, LEI DL, et al. Local injection of nerve growth factor via a hydrogel enhances bone formation during mandibular distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(1): 48-53.
[23] CAO J, ZHANG S, GUPTA A, et al. Sensory Nerves Affect Bone Regeneration in Rabbit Mandibular Distraction Osteogenesis. Int J Med Sci. 2019;16(6):831-837.
[24] KADHIM M, HOLMES L, GESHEFF MG, et al. Treatment Options for Nonunion With Segmental Bone Defects: Systematic Review and Quantitative Evidence Synthesis. J Orthop Trauma. 2017;31(2):111-119.
[25] HU XH, HUANG L, CHEN Z, et al. Effect of a combination of local flap and sequential compression-distraction osteogenesis in the reconstruction of post-traumatic tibial bone and soft tissue defects. Chin Med J (Engl). 2013;126(15):2846-2851.
[26] SARHANE KA, QIU C, HARRIS TGW, et al. Translational bioengineering strategies for peripheral nerve regeneration: opportunities, challenges, and novel concepts. Neural Regen Res. 2023;18(6):1229-1234.
[27] VEKRIS MD, BATES M, TERZIS JK. Optimal time for distraction osteogenesis in limbs with nerve repairs: experimental study in the rat. J Reconstr Microsurg. 1999;15(3):191-201.
[28] 任鹏,刘凯,刘彦士,等.SD大鼠坐骨神经断裂吻合后行肢体延长模型的建立[J].中华实验外科杂志,2022,39(5):983-986.
[29] QIN HJ, LI H, CHEN JZ, et al. Artificial nerve graft constructed by coculture of activated Schwann cells and human hair keratin for repair of peripheral nerve defects. Neural Regen Res. 2023;18(5):1118-1123.
[30] LI WY, ZHU GY, YUE WJ, et al. KLF7 overexpression in bone marrow stromal stem cells graft transplantation promotes sciatic nerve regeneration. J Neural Eng. 2019;16(5):056011.
[31] PAPAKONSTANTINOU KC, SHIAMISHIS G, BATES M, et al. Distraction osteogenesis using IGF-I after nerve microreconstruction. J Reconstr Microsurg. 2002;18(5):401-410.
[32] KIM BJ, CHO JM, KWON ST. Nerve Regeneration and Functional Recovery With Neurorrhaphy Performed at the Early Distraction Osteogenesis: An Experimental Study. Ann Plast Surg. 2017;79(1):47-52.
[33] WANG L, ZHOU S, LIU B, et al. Locally applied nerve growth factor enhances bone consolidation in a rabbit model of mandibular distraction osteogenesis. J Orthop Res. 2006;24(12):2238-2245. |