Chinese Journal of Tissue Engineering Research ›› 2013, Vol. 17 ›› Issue (1): 156-160.doi: 10.3969/j.issn.2095-4344.2013.01.025
Previous Articles Next Articles
Ruan Guang-ping, Wang Jin-xiang, Yang Xiao-yan, Song Qiao-qiao, Yao Xiang, Pang Rong-qing, Pan Xing-hua
Received:
2012-05-21
Revised:
2012-06-20
Online:
2013-01-01
Published:
2013-01-01
Contact:
Pan Xing-hua, M.D., Chief physician, Research Center for Stem Cells and Tissue Organ Engineering, Kunming General Hospital of Chinese PLA, Kunming 650032, Yunnan Province, China panxhynkm@yahoo.cn
About author:
Ruan Guang-hua☆, M.D., Attending physician, Research Center for Stem Cells and Tissue Organ Engineering, Kunming General Hospital of Chinese PLA, Kunming 650032, Yunnan Province, China ruangp@126.com
CLC Number:
Ruan Guang-ping, Wang Jin-xiang, Yang Xiao-yan, Song Qiao-qiao, Yao Xiang, Pang Rong-qing, . Research progress in reprogramming somatic cells into stem cells[J]. Chinese Journal of Tissue Engineering Research, 2013, 17(1): 156-160.
2.1 改变细胞表观遗传状态作为重编程路线 2.1.1 重编程基因表达 在基因组基础上核重编程需要事先重塑核结构。染色质的重塑,尤其是DNA分子与组蛋白的修饰,已用于胚胎干细胞和胚胎的广泛研究。表观遗传修饰的基因组是在DNA基础上可遗传和可调控的,从而调节转录活性(常染色质)或(异)染色质状态。这些表观遗传标记包括DNA甲基化差异和翻译后修饰,组蛋白氨基酸末端DNA甲基化在CpG二核苷酸关键的调控机制,并在基因控制中表达。在体细胞中,CpGs是甲基化的,在高CpG密度区域(CpG岛)是惟一的,这里甲基化维持在较低水平。这些领域特别受关注,是因为它们通常与蛋白质编码基因有关,当甲基化时基因表达被影响[5]。因此,重塑策略可能需要包括全基因组和基因特异的DNA甲基化检测,以确定重编程的程度。 组蛋白末端的修饰定义了细胞的转录活性或抑制状态。胚胎干细胞/胸腺细胞杂交引起体细胞基因组的全部染色质解凝,伴随着组蛋白H3K4乙酰化和独立的基因表达。这表明体细胞的特定组蛋白修饰需要完整的核重编程。更具体地说,当多能基因Oct-4启动子被分析,观察与胚胎干细胞相似细胞的特定表观表征,由DNA去甲基化,组蛋白H3K4超甲基化,组蛋白H3超乙酰化,和H3K9 去甲基化定义重编程细胞[6]。多能基因Oct-4精细调控表明,建立一个多能状态依赖于保证多能状态稳定的一系列修饰。 2.1.2 重编程DNA复制机制 更高顺序的染色质结构有重要的作用在管理重编程细胞的转录表征,最近的证据表明,从非洲爪蟾证明DNA快速复制是早期胚胎细胞分裂循环的特征[7]。 2.1.3 重塑核结构 重编程策略的一个最终目标是核的结构本身。在胚胎卵裂球和胚胎干细胞,核周边由核膜分隔,核膜由薄的蛋白层装饰,薄的蛋白层由B型核纤层蛋白组成。A型核纤层蛋白组合到分化细胞的核椎板,并在几乎所有的分化细胞中被发现。这种A型核纤层蛋白的及时表达,意味着它们或者发动分化或是分化的后果。虽然还没有完全阐明,但有证据表明,A型核纤层蛋白限制了细胞的可塑性,这表明它们对维持分化表型起显著作用[8]。 2.2 重编程策略 2.2.1 多能干细胞和体细胞杂交重编程 由两个保持独立的核细胞稳定融合组成的异核体证明,在移植后能形成自发的和改变终末分化的细胞。这种细胞融合和相互影响的能力已被广泛用于重编程体细胞。核重编程是由异核体中多能核引起的。早期的研究进行了胚胎癌细胞和体细胞融合,表明再活化灭活的X染色体,表明多能干细胞具有较强的重编程能力。当胚胎生殖细胞与胸腺细胞融合,DNA的几个位点发生去甲基化,其中包括印迹基因。相比之下,在鼠胚胎干细胞/胸腺细胞杂交中非印迹基因和染色体着丝粒区域的去甲基化,不影响印迹位点,从而表明在胚胎生殖细胞和胚胎干细胞重编程能力的重要不同。如果一个胚胎干细胞核在融合实验中需要重编程,那就表明核活化需要诱导多能性基因多能基因Oct-4重新启动。一个去核细胞质会因为缺乏足够的重编程因子诱发持续重构能力,在相当长的时间内会造成不完全重编程。 胚胎干细胞和体细胞融合:大量细胞能被处理,再活化多能基因Oct-4基因[9],灭活体基因,重编程的细胞注射入鼠能分化成各种细胞系。缺点:低效,细胞维持多能细胞基因组,可导致遗传学不稳定,胚胎干细胞的核是需要来维持重编程体细胞基因组的能力。 胚胎生殖细胞和体细胞融合:大量细胞能被处理,重编程的细胞能分化为各种细胞系[10]。缺点:擦除印迹,可能导致遗传学不稳定,再活化灭活的X染色体。 胚胎癌细胞和体细胞融合:大量细胞能被处理,灭活体基因[11]。缺点:再活化灭活的X染色体。 2.2.2 通过表达特定基因的重编程 最近的一份报告显示,用多能基因Oct-4,Sox-2,c-myc和Klf4转染小鼠胚胎和尾尖成纤维细胞,足以诱导细胞显示干细胞的特性,包括多能性基因表达,正常核型,在畸胎瘤产生3个胚层和嵌合体[12]。多能基因Oct-4和SOX-2是众所周知的在Nanog基因激活中合作,Nanog总是在细胞重编程中激活。该重编程细胞的起源目前仍没有明确,该方法是否是低效率选择“缺少分化”细胞在胚胎或尾尖成纤维细胞,这些细胞更适合进行重编程。表观遗传标记的去除和特定因子的表达,如Oct-4/Sox-2/c-myc/Klf4和Nanog的表达,可能提供一个更有效的体细胞重编程的组合。过分表达特定基因:Oct-4/Sox-2/ c-myc/Klf4表达能重建多能性在鼠胚胎和成人体细胞。缺点:需要被检测用人原代细胞,低效,表达表征不同于胚胎干细胞。 2.2.3 用两栖类生殖细胞因子重编程 分化后的体细胞核移植逆转表明,卵母细胞具备所有建立一个多能型细胞所需要的组件。但是,哺乳动物卵子使用有限,这就促使替代能源的卵母细胞和前卵细胞治疗的大量细胞的发展。最近的研究报告人类淋巴细胞多能基因Oct-4基因活化和体细胞Thy-1基因的抑制注射到非洲爪蟾卵母细胞证明了异源系统重编程的潜力。多能基因Oct-4激活需要其启动子甲基化和Oct-4的活化速度是依据染色质组织与DNA相关蛋白的程度而定的。多能基因Oct-4启动子如何成为DNA合子没有定论,也没有青蛙卵母细胞DNA脱甲基酶的明显证据。鉴于这种情况,很容易让人猜测,DNA的甲基化可能是一个重塑活性甲基结合域或MBD蛋白质和ATP依赖的染色质重塑因子介导的结果。 爪蟾卵提取物诱导人类白细胞表明,1周的细胞培养后可以重建多能基因Oct-4和生殖细胞特异性碱性磷酸酶。然而,在自然重塑下,给予简短的接触提取物(37 ℃,30 min)和多能基因Oct-4表达前延迟7 d检测的条件。然而,这个基因的激活所需要的是Brahma有关的第1组(BRG1)染色质重塑因子的建立。目前尚不清楚多能基因Oct-4启动子在BRG1枯竭提取物中是否去甲基化,它提供了一个去甲基化和染色质重塑活动的链接注入卵母细胞的记录。 注射入爪蟾卵母细胞:体积大容易可用,再活化多能基因多能基因Oct-4基因。缺点:细胞注射前需要渗透,注射细胞不容易回收,少量细胞能被处理,步骤繁琐和低效,再活化卵母细胞特异基因,表明重编程到卵母细胞状态而不是胚胎干细胞状态[13],Nanog和Sox-2表达,两个多能基因,还没有报告。 孵育在爪蟾卵母细胞和卵细胞提取液中:体积大容易可用,大量细胞能被处理或处理后培养,1周后再活化多能基因Oct-4基因。广泛的核重塑[14],在21 ℃进行,这时许多哺乳动物细胞活性关闭,潜在的增加了两栖因子重编程。缺点:处理前细胞需要渗透,再活化Nanog和Sox-2,两个多能基因,还没有报告。 2.2.4 使用细胞提取物重编程 在体细胞使用不同细胞类型提取物重编程细胞可以推动新的基因表达谱。这由293T和皮肤成纤维细胞诱导表达淋巴细胞标记已得到证实。这种方法最近也被用于去分化293T细胞和NIH3T3成纤维细胞在来源于多能细胞提取物孵育后。用这些提取物简短处理细胞引起形成集落有胚胎干细胞表型结构。上调许多多能基因和下调体基因比如核纤层蛋白A,随后检测到在处理后4周。此外,这些细胞能够分化为中胚层和外胚层谱系。由染色质重塑因子,组蛋白乙酰化,特定的基因表达和蛋白质合成介导的修改导致细胞表型的转变。这将是有趣的,看相似的重编程是否能达到用成人的原代细胞,这将代表重要的一步使用这种技术在再生医学。 胚胎生殖细胞提取物:重编程293T,再活化多能基因和下调体基因,重编程细胞在体外能分化为中胚层和外胚层[15]。缺点:需要被检测用原代细胞,没有信息可用关于印迹基因表达。 胚胎干细胞提取物:重编程293T和NIH3T3细胞表达多能基因Oct-4,下调体基因lamin A[15]。缺点:需要扩增大量胚胎干细胞产生小体积的提取物,重编程细胞繁殖1周,需要被检测用原代细胞。 2.2.5 使用合成分子重编程 使用命名为“reversine”化合物的小分子库,这种分子有能力在C2C12成肌细胞诱导细胞去分化[16]。由此产生的去分化细胞具有在各自的培养基中分化为成骨和成脂细胞的能力。杂环化合物库也被用来鉴定分子有能力诱导小鼠胚胎干细胞的神经和心肌细胞分化,并诱导间质干细胞分化为成骨细胞。人工合成分子的使用有推进细胞分化为新表型的潜力,这些物质作用与生理活动密切相关,特别是细胞分化的复杂的表观遗传机制。特定的合成分子诱导去分化C2C12细胞为多能前体,大量细胞能被处理。缺点:只在C2C12成肌细胞被证实,去分化潜能需要被检测用原代细胞。 2.2.6 细胞质重编程:RNA的连接 最近对使用antagomirs或经化学修改互补的miRNA的报道,认为在体内沉默内源性miRNA是对miRNA功能研究的重要工具。抑制特定的miRNA可导致上调或下调数百个mRNA,通过识别每个miRNA图案在3’UTR。这表明,改变一个细胞的miRNA载量改进细胞对外源性因素的反应重编程基因表达。例如,多能基因Oct-4,Sox-2和nanog连结启动子14miRNA表明重编程这些转录因子的表达可能对细胞的miRNA组成有重大影响,使他们更适于获得一个多能状态[17]。"
[1] Campbell KH, Alberio R. Reprogramming the genome: role of the cell cycle. Reprod Suppl. 2003;61:477-494.[2] Boiani M, Eckardt S, Schöler HR,et al. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev. 2002;16(10):1209-1219.[3] Bortvin A, Eggan K, Skaletsky H,et al. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development. 2003;130(8):1673-1680.[4] Loi P, Clinton M, Vackova I,et al. Placental abnormalities associated with post-natal mortality in sheep somatic cell clones. Theriogenology. 2006;65(6):1110-1121.[5] Blelloch R, Wang Z, Meissner A,et al. Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells. 2006;24(9):2007-2013.[6] Kimura H, Tada M, Nakatsuji N,et al. Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Mol Cell Biol. 2004;24(13):5710-5720.[7] Lemaitre JM, Danis E, Pasero P,et al. Mitotic remodeling of the replicon and chromosome structure. Cell. 2005;123(5): 787-801.[8] Constantinescu D, Gray HL, Sammak PJ,et al. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells. 2006;24(1):177-185.[9] Cowan CA, Atienza J, Melton DA,et al. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science. 2005;309(5739):1369-1373.[10] Tada M, Tada T, Lefebvre L,et al. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 1997;16(21):6510-6520.[11] Takagi N, Yoshida MA, Sugawara O,et al. Reversal of X-inactivation in female mouse somatic cells hybridized with murine teratocarcinoma stem cells in vitro. Cell. 1983;34(3): 1053-1062.[12] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676.[13] Tamada H, Van Thuan N, Reed P,et al. Chromatin decondensation and nuclear reprogramming by nucleoplasmin. Mol Cell Biol. 2006;26(4):1259-1271.[14] Alberio R, Johnson AD, Stick R,et al. Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm. Exp Cell Res. 2005;307(1):131-141.[15] Taranger CK, Noer A, Sørensen AL,et al. Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell. 2005;16(12):5719-5735.[16] Chen S, Zhang Q, Wu X,et al. Dedifferentiation of lineage-committed cells by a small molecule. J Am Chem Soc. 2004;126(2):410-411.[17] Boyer LA, Lee TI, Cole MF,et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005; 122(6):947-956. |
[1] | Jiang Tao, Ma Lei, Li Zhiqiang, Shou Xi, Duan Mingjun, Wu Shuo, Ma Chuang, Wei Qin. Platelet-derived growth factor BB induces bone marrow mesenchymal stem cells to differentiate into vascular endothelial cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(25): 3937-3942. |
[2] | Mo Jianling, He Shaoru, Feng Bowen, Jian Minqiao, Zhang Xiaohui, Liu Caisheng, Liang Yijing, Liu Yumei, Chen Liang, Zhou Haiyu, Liu Yanhui. Forming prevascularized cell sheets and the expression of angiogenesis-related factors [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3479-3486. |
[3] | Chen Lei, Zheng Rui, Jie Yongsheng, Qi Hui, Sun Lei, Shu Xiong. In vitro evaluation of adipose-derived stromal vascular fraction combined with osteochondral integrated scaffold [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3487-3492. |
[4] | Wei Qin, Zhang Xue, Ma Lei, Li Zhiqiang, Shou Xi, Duan Mingjun, Wu Shuo, Jia Qiyu, Ma Chuang. Platelet-derived growth factor-BB induces the differentiation of rat bone marrow mesenchymal stem cells into osteoblasts [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(19): 2953-2957. |
[5] | Chen Xiao, Guo Zhi, Chen Lina, Liu Xuanyong, Zhang Yihuizhi, Li Xumian, Wang Yueqiao, Wei Liya, Xie Jing, Lin Li. Factors affecting the mobilization and collection of autologous peripheral blood hematopoietic stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(19): 2958-2962. |
[6] | Guo Zhibin, Wu Chunfang, Liu Zihong, Zhang Yuying, Chi Bojing, Wang Bao, Ma Chao, Zhang Guobin, Tian Faming. Simvastatin stimulates osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(19): 2963-2968. |
[7] | Li Congcong, Yao Nan, Huang Dane, Song Min, Peng Sha, Li Anan, Lu Chao, Liu Wengang. Identification and chondrogenic differentiation of human infrapatellar fat pad derived stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(19): 2976-2981. |
[8] | Gao Yuanhui, Xiang Yang, Cao Hui, Wang Shunlan, Zheng Linlin, He Haowei, Zhang Yingai, Zhang Shufang, Huang Denggao. Comparison of biological characteristics of adipose derived mesenchymal stem cells in Wuzhishan inbreed miniature pigs aged two different months [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(19): 2988-2993. |
[9] | Cao Yang, Zhang Junping, Peng Li, Ding Yi, Li Guanghui. Isolation and culture of rabbit aortic endothelial cells and biological characteristics [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(19): 3000-3003. |
[10] | Dai Min, Wang Shuai, Zhang Nini, Huang Guilin, Yu Limei, Hu Xiaohua, Yi Jie, Yao Li, Zhang Ligang. Biological characteristics of hypoxic preconditioned human amniotic mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(19): 3004-3008. |
[11] | Qin Yanchun, Rong Zhen, Jiang Ruiyuan, Fu Bin, Hong Xiaohua, Mo Chunmei. Chinese medicine compound preparation inhibits proliferation of CD133+ liver cancer stem cells and the expression of stemness transcription factors [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(19): 3016-3023. |
[12] | Dai Yaling, Chen Lewen, He Xiaojun, Lin Huawei, Jia Weiwei, Chen Lidian, Tao Jing, Liu Weilin. Construction of miR-146b overexpression lentiviral vector and the effect on the proliferation of hippocampal neural stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(19): 3024-3030. |
[13] | Chen Jie, Liao Chengcheng, Chen Zhiwei, Wang Yan. Bladder cancer stem cell markers and related signaling pathways: antibody targeted therapy [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(19): 3090-3096. |
[14] | Zhang Wei, Cui Shuaishuai, Zhou Zhichao, Hu Xiaohua, Yang Xiaohong. MicroRNA regulates histone deacetylase in the treatment of bone-related diseases [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(17): 2767-2774. |
[15] | Chen Liang, Meng Shu, Cheng Guoping, Ding Yi . Effects of fish scale collagen membrane on adhesion, proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(16): 2494-2499. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||