Chinese Journal of Tissue Engineering Research ›› 2017, Vol. 21 ›› Issue (20): 3263-3268.doi: 10.3969/j.issn.2095-4344.2017.20.023
Previous Articles Next Articles
Zhu Shuang-long1, 2, 3, Chen Xu-yi3, Xu Yun-qiang1, 2, Zhang Sai3
Revised:
2017-02-10
Online:
2017-07-18
Published:
2017-07-28
Contact:
Xu Yun-qiang, M.D., Associate chief physician, Master’s supervisor, Tianjin Medical University, Tianjin 300052, China; General Hospital of Tianjin Medical University, Tianjin 300052, China
About author:
Zhu Shuang-long, Studying for master’s degree, Tianjin Medical University, Tianjin 300052, China; General Hospital of Tianjin Medical University, Tianjin 300052, China; Brain Center, Affiliated Hospital of Logistics College of CAPF, Tianjin 300162, China.
Chen Xu-yi, M.D., Master’s supervisor, Associate chief physician, Brain Center, Affiliated Hospital of Logistics College of CAPF, Tianjin 300162, China.
Zhu Shuang-long and Chen Xu-yi contributed equally to this work.
Supported by:
the Youth Project of the National Natural Science Foundation of China, No. 81101362, 11102235; the Key Project of the Natural Science Foundation of Tianjin, No. 12JCZDJC24100
CLC Number:
Zhu Shuang-long, Chen Xu-yi, Xu Yun-qiang, Zhang Sai. Hypothermia regulates the internal environment following spinal cord injury: the underlying mechanisms[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(20): 3263-3268.
2.1 低温治疗的方式与温度、时程选择对脊髓损伤的影响 2.1.1 低温的分类 目前轻度低温、中度低温、深低温和极深低温分别的范围是32-35 ℃、28-32 ℃、17-28 ℃和2-16 ℃,前二者合称为亚低温[12]。低温治疗脊髓损伤可分为系统低温(又称全身低温)和局部低温二种形 式[3]。系统低温涉及到整个身体的温度降低,是一种相对简单以及能够使温度控制在一定限度范围,是治疗急性脊髓损伤患者的有效方法[13]。系统低温的方法主要包括冰毯、药物麻醉、冰块冷敷、冰水灌胃、调节室温等。目前系统低温一般都采用亚低温(31-35 ℃)。降温幅度在3-4 ℃之间被证明是有效的,过高过低都会影响疗 效[14-16]。局部低温,即温度降低仅在脊髓的短距离和特定区段,目前被认为是治疗急性挫伤性脊髓损伤有前景的第一线治疗方法。局部低温按侵入程度又可分为侵入性、半侵入性、非侵入性三种方式,侵入性低温方式需进行如椎板切除等大型手术,因此在临床上少见[13]。局部低温主要是冰盐水灌注、冰块、半导体局部降温仪等,通过经皮局部降温、硬膜外局部降温、硬膜切开途径降温。脊髓局部低温目前没有统一标准,有2-5 ℃、4-8 ℃,16-19 ℃、24 ℃等,低温效果各异[12,17]。目前有文献报道,在脊髓损伤局部低温模型制备方面主要为2种类型:①传统模型制备是在咬除损伤节段的棘突并打开硬脊膜后,使用冰等渗盐水等持续灌注蛛网膜下腔,由此建立局部低温模型,但该模型温度可控性差,准确性低;②改良型模型制备是通过热电制冷仪珀耳帖效应在二种不同的材质之间建立起热负荷,设备组件可利用电能,逆温度梯度地进行热量迁移,能够调节局部低温的效果,具有安全性,可控性[9]。 2.1.2 系统低温与局部低温的优缺点 系统低温操作简单、无创、迅速、可重复、温度能够很好的控制[3]。在系统低温所有方法中,医用自动调温毯是一种较好的全身降温工具,可控性好且具有降温、复温双重功能[18]。有研究指出,脑代谢率的首要决定因素在于脑血流灌注量,脑部缺血主要特征在于供氧不足,ATP和葡糖糖产生的能量也会随之减少[19-20]。经系统降温后通过脑部的血流每降低1 ℃,脑代谢率就减少6%-7%,继而减少脑部需氧量,维持组织磷酸化和能量储存,防止乳酸堆积和酸中毒的进一步发展。有文献报道指出,系统低温所降温的部位除了损伤部位也包括脑、心脏、肝、肾等其他正常组织器官[10]。系统低温引起严重的并发症使其不能作为治疗的第一线方法。临床上系统低温主要的并发症有:①外周血管收缩,可能引起肾功能障碍;②心动过缓发作,其降低心肌收缩力,心输出量减少,血压降低,因而可能引起心脏纤维性颤动;③白细胞吞噬功能受损,引起免疫抑制;④轻度凝血和血小板功能障碍;⑤体温防御功能障碍和寒战;⑥通过增加二氧化碳的溶解度升高血液pH值和降低二氧化碳分压;⑦通过胰岛素抵抗引起高血糖症;⑧复温期间通过增加胰岛素的敏感性引起低血糖[21-22]。在临床上,3-4 ℃的系统低温幅度也会带来心律失常,出血和血管痉挛,可能延长患者的术后恢复等风险[23-24]。系统低温受到损伤位点温度和核心体温之间的关系以及系统降温的技术与安全性与发病率的关系等因素的限制[12]。 局部低温能够快速达到目标体温,使受伤部位达到深低温且核心温度趋于稳定体温。在脊髓损伤中局部低温比系统低温更有价值,其避免了系统低温对正常器官组织潜在并发症,特别对心律失常和长期的神经缺损比系统低温效果明显,因此局部低温治疗脊髓损伤具有降温速度快、降温深度强、对全身系统影响小等优点[18,25]。脂质过氧化反应在机体的新陈代谢中起到正要作用,机体受到破坏后,就会引起代谢异常和免疫功能降低,损害生物膜及其功能,造成细胞线粒体肿胀、溶解等损伤从而阻碍神经细胞增殖。脊髓损伤后,局部低温可以减少脂质氧化产物的生成,从而减少神经细胞的损伤[26]。局部使用侵入性或者半侵入性方式降温时,则需进行有创手术,如侵入性低温方式需进行如椎板切除等大型手术,且有降低受损脊柱节段稳定性的风险,同时患者也很难接受仅仅为实施低温治疗而行椎板切除。如果使用非侵入性方式,虽然避免无创,但存在定位和维持有效温度必要时间的问题[18,27]。 2.1.3 低温的时程及温度对脊髓损伤的影响 在降温时间上的研究各异,其效果也不相同,有30 min及1,2,3,4,6,8 h等短时程和18,24 h等长时程。短时程低温能减轻损伤部位水肿,降低微管相关蛋白2阳性蛋白表达和脊髓血流量,抑制损伤部位的出血和实质性损伤。短时程低温后,损伤部位出现少量TUNEL阳性细胞[12]。在长时程低温治疗方面,Vipin等[27]通过对局部低温诱导4周后的大鼠损伤脊髓进行组织学检查,发现没有出现脊髓解剖结构损害或脊髓结构和软组织形态的变化,因此认为延长局部低温时间的方法是安全可行的,并且能够向临床转化。Cappuccino等[28]对1例脊髓损伤患者,AIS等级为D[29],于伤后16 h进行33.5 ℃总共36 h的低温治疗,4个月后该患者持续无并发症。Ok等[30]对损伤大鼠分别进行系统低温(32 ℃,48 h)和局部低温(硬膜外低温 28 ℃,48 h)治疗,认为这2种长时程低温方法均具有神经保护作用,其中系统低温通过抗凋亡和抗炎症作用更强。有研究表明,伤后4 h开始低温疗法,持续1,4及18 h都有较好的神经功能恢复效果,且以持续4 h恢复效果最好[31-32]。低温治疗脊髓损伤是有一定限度的,过度的低温可能使细胞外兴奋性氨基酸(主要为谷氨酸)浓度升高释放毒性作用,影响细胞存活率。Craenen等[33]研究表明脊髓神经细胞低温10 ℃时,持续30 min后细胞外谷氨酸浓度比正常细胞高6倍。Lucas等[34]在脊髓损伤低温保护试验中发现温度小于17 ℃时,神经细胞出现肿胀,复温时死亡,因此低温治疗脊髓损伤时,温度不宜过低[35]。 中枢神经系统损伤造成局部微环境恶劣,引起神经系统再生修复困难。脊髓损伤后发生病损部位水肿、血管系统崩解、免疫细胞浸润、炎症反应、神经胶质瘢痕形成、神经细胞死亡、脱髓鞘等一系列病理变化,同时脊髓损伤激活内源性神经干细胞/神经前体细胞参与神经修复[36-37]。研究指出低温治疗逐渐应用到神经系统损伤修复领域,以改善脊髓损伤后的不利微环境[9]。 2.2 低温治疗对脊髓损伤微环境的影响 目前低温治疗改善脊髓损伤的微环境主要涉及以下几个方面。 2.2.1 低温减少脊髓损伤后炎症递质的表达 在脊髓损伤后的继发性损伤中,炎症反应涉及神经、免疫两大系统,各种因子的动态作用,使其成为组成继发性损伤的重要事件。大量研究表明,脊髓损伤引起的炎症反应具有神经损伤与神经保护的双重效果[38]。低温可以减轻炎症反应,降低星形胶质细胞和小胶质细胞的活性,并且减少炎性细胞因子、内皮细胞因子、中性粒细胞和单核细胞的表达。但是,低温对炎症的影响非常复杂,不仅抑制促炎因子也引起抗炎因子白细胞介素10、肿瘤坏死因子β水平的降低,总的来说低温对炎症主要是抑制作用[39]。脊髓损伤后局部缺血缺氧,炎症细胞因子表达增加,造成组织坏死,导致脊髓损伤加重。低温已经被证明能够抑制炎症反应,在一些临床研究中低温可以使外周血淋巴细胞和NK细胞活性降低。炎症因子肿瘤坏死因子α在脊髓损伤早期表达,其不但促进白细胞在损伤缺血区的聚集和浸润,并且能增强中性粒细胞与内皮细胞的粘附和激活,介导其他细胞因子的产生[40-42]。Benson等[43-44]研究结果表明,低温治疗对炎症因子肿瘤坏死因子α在脊髓损伤的分泌有一定抑制作用,从而减轻炎症反应抑制内源性毒性产物对脊髓组织的损害。白细胞介素8和单核细胞趋化蛋白1参与嗜中性粒细胞在血管内皮下间隙聚集和单核细胞粘附至内皮细胞的促炎趋化因子。白细胞介素8是调节血管内皮细胞多种生物活性的一个重要的自分泌生长因子。有研究指出,在低温(32及17 ℃)情况下,血管内皮细胞内白细胞介素8和单核细胞趋化蛋白1表达水平较常温(37 ℃)降低,此外,低温治疗可以减少白细胞介素6、白细胞介素1β等炎症细胞因子的合成释放,减轻脊髓炎症反应[45-46]。 2.2.2 低温对脊髓损伤后细胞凋亡基因表达的影响 低温治疗已经被证明能够减弱促细胞凋亡介质的释放和激活抗凋亡通路,并且增加P53基因的表达促进损伤的恢复[10]。 系统低温:张建军等[47]通过对Allen 打击法造成脊髓损伤大鼠进行低温治疗72 h后,观察到大鼠损伤脊髓组织中凋亡指数降低,水通道蛋白4/9 mRNA和蛋白表达水平下降,说明亚低温治疗通过减少神经细胞凋亡和降低水通道蛋白4/9 mRNA 和蛋白的表达水平,对脊髓损伤起到保护作用。此外,也有研究显示,在脊髓损伤大鼠,通过身体低温抑制小胶质细胞的炎症反应和细胞凋亡,从而改善大鼠损伤后恢复[39]。 局部低温:有观点认为在神经细胞中,局部缺血缺氧引起的神经元死亡的主要原因是细胞凋亡,并且与Bax和Bcl-2蛋白的调节密切相关[48]。Diestel等[46]对分离的炎症刺激血管内皮细胞进行低温、常温措施后,利用Western blot检测Bcl-2/Bax比率来评价细胞相关炎症状态。实验的结果是经过低温措施后的细胞Bcl-2/Bax比率高于常温措施对照组。研究证明,Bcl-2蛋白家族是线粒体凋亡信号通路重要的中转调控基因[49]。Bax受MEKK和P53的基因的上游信号的调控,并且是激活凋亡基因蛋白家族在下游的细胞凋亡信号蛋白质的最终途径[49]。关于激活Bax蛋白上游通路的初始因素的机制不明,但Bcl-2的激活是通过结合蛋白质效应嵌入到Bax线粒体膜,防止线粒体细胞色素C的释放,从而调节细胞凋亡[50]。 系统低温:Zhu等[51]在大鼠脊髓损伤局灶缺血90 min再灌注30 min模型的研究中,采用18,28 ℃及室温3种环境温度,发现低温组中脊髓损伤处Bax的表达水平明显低于室温组,脊髓损伤处Bcl-2表达水平明显高于室温组,脊髓损伤处凋亡细胞数量比室温组减少,以及下肢功能恢复评分较室温组高。Kamme等[52]与Zhang等[53]在动物脑缺血模型研究中证明,细胞抗凋亡基因Bcl-2主要表达在幸存细胞中,亚低温(33 ℃)之后既能缩小损伤部位的梗死灶大小,又能促进Bcl-2蛋白的选择性合成,提高缺血后Bcl-2蛋白的表达水平,抑制神经元的凋亡。此外徐杰等[54]研究表明,脊髓损伤后病理组织显示常温组8 h、24 h灰质和白质凋亡细胞分布明显比低温组更广泛,从病理学上为低温对脊髓损伤后细胞的保护提供依据。 2.2.3 低温影响脊髓损伤后相关蛋白的表达 Nogo蛋白包括Nogo-A,Nogo-B,Nogo-C,Nogo-A可抑制突触再生,Nogo-B可影响血管结构重新构建,Nogo-C参与细胞凋亡。硫酸软骨素蛋白多糖属于抑制细胞外基质分子家族,通过抑制细胞再生和重组去限制损伤部位解剖结构的可塑性[7,55]。低温治疗能够对中枢神经系统的神经元损伤和缺血损伤提供保护作用已经得到肯定,其能够降低相关抑制蛋白的表达。在苑国富等[56]研究中发现,系统低温能够调节大脑皮质区RhoA及Nogo-A的表达,加强对脑损伤的保护作用。由于抑制分子存在,成年脊髓神经元可塑性和轴突再生被极大的限制,其中最主要的为Nogo-A[1]。硫酸软骨素蛋白多糖,Nogo-A激活物RhoA一起可调节组织的肌动蛋白细胞骨架,基因表达以及细胞增殖。Nogo-A激活物RhoA和其主要下游蛋白Rho激酶Ⅱ(ROCK-II)在轴突再生过程中发挥显著的作用,调节生长锥的形成和延迟神经炎症。轴突的再生是通过限制脊髓损伤RhoA-ROCK通路的激活[57-58]。Xu等[7]利用大鼠脊髓损伤模型,在脊髓损伤部位局部低温18 ℃,持续2 h,损伤2和8 d后RhoA、ROCK-II及NG2 mRNA水平和神经蛋白聚糖、短蛋白聚糖和Nogo-A表达水平下调,脊髓中出现更多的轴突和功能行为的恢复改进,提示局部深低温可抑制RhoA和ROCK-II通路,减少对轴突再生的抑制。"
[1] Stahel PF, VanderHeiden T, Finn MA. Management strategies for acute spinal cord injury: current options and future perspectives. Curr Opin Crit Care. 2012;18(6):651-660. [2] Wang D, Zhang J. Effects of hypothermia combined with neural stem cell transplantation on recovery of neurological function in rats with spinal cord injury. Mol Med Rep. 2015; 11(3):1759-1767. [3] Tracy B, Armola R, Micham J. The "cold cord": a review of therapeutic hypothermia for traumatic spinal cord injuries. Am J Crit Care. 2015;24(6):540-543. [4] 黄学英,王丽华,柳尧花.MOTOmed运动训练在颈髓损伤四肢瘫痪患者康复中的应用[J].海军医学杂志,2015,36(6):581-583.[5] 贾叙锋,龙苗,戢勇,等.SD大鼠脊髓损伤后微环境的模拟实验[J].中国组织工程研究,2016,20(5):628-634.[6] 马天文.表皮局部制冷致硬膜外亚低温对兔急性脊髓损伤的影响[D].上海:复旦大学,2005. [7] Xu X, Li N, Zhu L, et al. Beneficial effects of local profound hypothermia and the possible mechanism after experimental spinal cord injury in rats. J Spinal Cord Med. 2016;39(2):220-228. [8] 周良辅.亚低温治疗神经系统疾病的历史及现状[J].中华神经创伤外科电子杂志,2015,1(3):60.[9] 励宁.局部低温在脊髓损伤中的研究及应用[J].医学研究生学报, 2013,26(5):548-551.[10] Karnatovskaia LV, Wartenberg KE, Freeman WD. Therapeutic hypothermia for neuroprotection: history, mechanisms, risks, and clinical applications. Neurohospitalist. 2014;4(3):153-163. [11] 王峰,李钊,刘小兵,等.亚低温治疗急性颈髓损伤的临床研究[J].河北医药,2014,36(2):204-206.[12] Kwon BK, Mann C, Sohn HM, et al. Hypothermia for spinal cord injury. Spine J. 2008;8(6):859-874. [13] Tseng MY, Czosnyka M, Richards H, et al. Effects of acute treatment with pravastatin on cerebral vasospasm, autoregulation, and delayed ischemic deficits after aneurysmal subarachnoid hemorrhage: a phase II randomized placebo-controlled trial. Stroke. 2005;36(8):1627-1632.[14] 张亚峰,杨惠林,唐天驷,等.亚低温对脊髓缺血再灌注损伤的保护及机制的研究[J].苏州大学学报(医学版),2005,25(1):54-59.[15] Horiuchi T, Kawaguchi M, Kurita N, et al. The long-term effects of mild to moderate hypothermia on gray and white matter injury after spinal cord ischemia in rats. Anesth Analg. 2009;109(2):559-566.[16] Matsumoto M, Iida Y, Sakabe T, et al. Mild and moderate hypothermia provide better protection than a burst-suppression dose of thiopental against ischemic spinal cord injury in rabbits. Anesthesiology. 1997;86(5):1120-1127.[17] Dimar JR 2nd, Shields CB, Zhang YP, et al. The role of directly applied hypothermia in spinal cord injury. Spine (Phila Pa 1976). 2000;25(18):2294-2302.[18] 费华伟.亚低温在脊髓损伤治疗中的研究现状[J].中国医药导报, 2012,9(9):11-13.[19] Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med. 2009;37(7 Suppl):S186-202.[20] Zhao QJ, Zhang XG, Wang LX. Mild hypothermia therapy reduces blood glucose and lactate and improves neurologic outcomes in patients with severe traumatic brain injury. J Crit Care. 2011;26(3):311-315.[21] Levi AD, Casella G, Green BA, et al. Clinical outcomes using modest intravascular hypothermia after acute cervical spinal cord injury. Neurosurgery. 2010;66(4):670-677.[22] Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346(8):549-556.[23] Tokutomi T, Miyagi T, Takeuchi Y, et al. Effect of 35 degrees C hypothermia on intracranial pressure and clinical outcome in patients with severe traumatic brain injury. J Trauma. 2009; 66(1):166-173.[24] Sessler DI. Complications and treatment of mild hypothermia. Anesthesiology. 2001;95(2):531-543.[25] Hansebout RR, Hansebout CR. Local cooling for traumatic spinal cord injury: outcomes in 20 patients and review of the literature. J Neurosurg Spine. 2014;20(5):550-561.[26] Tüzgen S, Kaynar MY, Güner A, et al. The effect of epidural cooling on lipid peroxidation after experimental spinal cord injury. Spinal Cord. 1998;36(9):654-657.[27] Vipin A, Kortelainen J, Al-Nashash H, et al. Prolonged Local Hypothermia Has No Long-Term Adverse Effect on the Spinal Cord. Ther Hypothermia Temp Manag. 2015;5(3):152-162.[28] Cappuccino A, Bisson LJ, Carpenter B, et al. The use of systemic hypothermia for the treatment of an acute cervical spinal cord injury in a professional football player. Spine (Phila Pa 1976). 2010;35(2):E57-62.[29] Kirshblum SC, Biering-Sørensen F, Betz R, et al. International standards for neurological classification of spinal cord injury: cases with classification challenges. Top Spinal Cord Inj Rehabil. 2014;20(2):81-89.[30] Ok JH, Kim YH, Ha KY. Neuroprotective effects of hypothermia after spinal cord injury in rats: comparative study between epidural hypothermia and systemic hypothermia. Spine (Phila Pa 1976). 2012;37(25):E1551-1559.[31] Ramer LM, Ramer MS, Bradbury EJ. Restoring function after spinal cord injury: towards clinical translation of experimental strategies. Lancet Neurol. 2014 ;13(12):1241-1256.[32] Ahmad FU, Levi AD. Hypothermia for spinal cord injury. J Neurosurg Spine. 2014;21(5):843-844.[33] Craenen G, Jeftinija S, Grants I, et al. The role of excitatory amino acids in hypothermic injury to mammalian spinal cord neurons. J Neurotrauma. 1996;13(12):809-818.[34] Lucas JH, Wang GF, Gross GW. Paradoxical effect of hypothermia on survival of lesioned and uninjured mammalian spinal neurons. Brain Res. 1990;517(1-2):354-357.[35] 荆珏华,郑祖根.亚低温对大鼠脊髓损伤后细胞外氨基酸含量的影响[J].齐齐哈尔医学院学报,2003,24(7):721-724.[36] Hagg T, Oudega M. Degenerative and spontaneous regenerative processes after spinal cord injury. J Neurotrauma. 2006;23(3-4):264-280.[37] Barnabé-Heider F, Göritz C, Sabelström H, et al. Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell. 2010;7(4):470-482.[38] Hohlfeld R, Kerschensteiner M, Meinl E. Dual role of inflammation in CNS disease. Neurology. 2007;68(22 Suppl 3):S58-63; discussion S91-96.[39] Kao CH, Chio CC, Lin MT, et al. Body cooling ameliorating spinal cord injury may be neurogenesis-, anti-inflammation- and angiogenesis-associated in rats. J Trauma. 2011;70(4):885-893.[40] Yang L, Blumbergs PC, Jones NR, et al. Early expression and cellular localization of proinflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in human traumatic spinal cord injury. Spine (Phila Pa 1976). 2004;29(9):966-971.[41] 胡沣,朱捷,张迪,等.海水浸泡对兔脊髓损伤后TNF-α及VEGF表达的影响[J].安徽医学,2015,36(11):1313-1317.[42] Saito T, Otsuka A, Kurashima A, et al. Study of lymphocyte and NK cell activity during mild hypothermia therapy. No Shinkei Geka. 2001;29(7):633-639.[43] Benson RM, Minter LM, Osborne BA, et al. Hyperbaric oxygen inhibits stimulus-induced proinflammatory cytokine synthesis by human blood-derived monocyte-macrophages. Clin Exp Immunol. 2003;134(1):57-62.[44] 胡勇,黄巍,李德宝.亚低温对急性脊髓损伤后肿瘤坏死因子-α表达及运动功能恢复的影响[J].中国医药导报,2013,10(7):47-51.[45] Goetz T, Romero-Sierra C, Ethier R, et al. Modeling of therapeutic dialysis of cerebrospinal fluid by epidural cooling in spinal cord injuries. J Neurotrauma. 1988;5(2):139-150.[46] Diestel A, Roessler J, Berger F, et al. Hypothermia downregulates inflammation but enhances IL-6 secretion by stimulated endothelial cells. Cryobiology. 2008;57(3):216-222.[47] 张建军,史焕昌,杨卫山,等.亚低温条件下脊髓损伤模型大鼠神经再生微环境及运动功能的变化[J].中国组织工程研究,2015, 19(27):4316-4321.[48] Hardwick JM, Chen YB, Jonas EA. Multipolar functions of BCL-2 proteins link energetics to apoptosis. Trends Cell Biol. 2012;22(6):318-328.[49] 张林峰.推拿对SNI大鼠脊髓腹角和背根神经元凋亡通路中Bcl-2、caspase-3表达的影响[D].北京:北京中医药大学,2016.[50] García-Sáez AJ. The secrets of the Bcl-2 family. Cell Death Differ. 2012;19(11):1733-1740.[51] Zhu P, Zhao MY, Li XH, et al. Effect of low temperatures on BAX and BCL2 proteins in rats with spinal cord ischemia reperfusion injury. Genet Mol Res. 2015;14(3):10490-10499.[52] Kamme F, Wieloch T. The effect of hypothermia on protein synthesis and the expression of immediate early genes following transient cerebral ischemia. Adv Neurol. 1996;71: 199-206; discussion 206-207.[53] Zhang Z, Sobel RA, Cheng D, et al. Mild hypothermia increases Bcl-2 protein expression following global cerebral ischemia. Brain Res Mol Brain Res. 2001;95(1-2):75-85.[54] 徐杰,荆珏华,郑祖根.亚低温对脊髓损伤后神经细胞凋亡的影响[J].脊柱外科杂志,2004,2(6):349-353.[55] 贾军,冯世庆,曾宪铁,等.Nogo蛋白及其受体在脊髓损伤中的作用[J].国际骨科学杂志,2015,36(6):441-444.[56] 苑国富,李红星.大鼠颅脑损伤后亚低温治疗对RhoA及Nogo-A表达的影响[J].中国现代医学杂志,2011,21(13):1435-1439.[57] Monnier PP, Sierra A, Schwab JM, et al. The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol Cell Neurosci. 2003;22(3):319-330.[58] Niederöst B, Oertle T, Fritsche J, et al. Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1. J Neurosci. 2002;22(23):10368-10376. |
[1] | Yao Xiaoling, Peng Jiancheng, Xu Yuerong, Yang Zhidong, Zhang Shuncong. Variable-angle zero-notch anterior interbody fusion system in the treatment of cervical spondylotic myelopathy: 30-month follow-up [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(9): 1377-1382. |
[2] | An Weizheng, He Xiao, Ren Shuai, Liu Jianyu. Potential of muscle-derived stem cells in peripheral nerve regeneration [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1130-1136. |
[3] | Zhang Jinglin, Leng Min, Zhu Boheng, Wang Hong. Mechanism and application of stem cell-derived exosomes in promoting diabetic wound healing [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(7): 1113-1118. |
[4] | He Yunying, Li Lingjie, Zhang Shuqi, Li Yuzhou, Yang Sheng, Ji Ping. Method of constructing cell spheroids based on agarose and polyacrylic molds [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 553-559. |
[5] | He Guanyu, Xu Baoshan, Du Lilong, Zhang Tongxing, Huo Zhenxin, Shen Li. Biomimetic orientated microchannel annulus fibrosus scaffold constructed by silk fibroin [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 560-566. |
[6] | Chen Xiaoxu, Luo Yaxin, Bi Haoran, Yang Kun. Preparation and application of acellular scaffold in tissue engineering and regenerative medicine [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 591-596. |
[7] | Kang Kunlong, Wang Xintao. Research hotspot of biological scaffold materials promoting osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 597-603. |
[8] | Shen Jiahua, Fu Yong. Application of graphene-based nanomaterials in stem cells [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 604-609. |
[9] | Zhang Tong, Cai Jinchi, Yuan Zhifa, Zhao Haiyan, Han Xingwen, Wang Wenji. Hyaluronic acid-based composite hydrogel in cartilage injury caused by osteoarthritis: application and mechanism [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 617-625. |
[10] | Li Hui, Chen Lianglong. Application and characteristics of bone graft materials in the treatment of spinal tuberculosis [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 626-630. |
[11] | Gao Cangjian, Yang Zhen, Liu Shuyun, Li Hao, Fu Liwei, Zhao Tianyuan, Chen Wei, Liao Zhiyao, Li Pinxue, Sui Xiang, Guo Quanyi. Electrospinning for rotator cuff repair [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(4): 637-642. |
[12] | Guan Jian, Jia Yanfei, Zhang Baoxin , Zhao Guozhong. Application of 4D bioprinting in tissue engineering [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(3): 446-455. |
[13] | Liu Jiali, Suo Hairui, Yang Han, Wang Ling, Xu Mingen. Influence of lay-down angles on mechanical properties of three-dimensional printed polycaprolactone scaffolds [J]. Chinese Journal of Tissue Engineering Research, 2022, 10(16): 2612-2617. |
[14] | Huang Bo, Chen Mingxue, Peng Liqing, Luo Xujiang, Li Huo, Wang Hao, Tian Qinyu, Lu Xiaobo, Liu Shuyun, Guo Quanyi . Fabrication and biocompatibility of injectable gelatin-methacryloyl/cartilage-derived matrix particles composite hydrogel scaffold [J]. Chinese Journal of Tissue Engineering Research, 2022, 10(16): 2600-2606. |
[15] | Fang Xiaoyang, Tang Tian, Wang Nan, Qian Yuzhang, Xie Lin. Repair and regenerative therapies of the annulus fibrosus [J]. Chinese Journal of Tissue Engineering Research, 2022, 26(10): 1582-1587. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||