Chinese Journal of Tissue Engineering Research ›› 2023, Vol. 27 ›› Issue (1): 34-41.doi: 10.12307/2022.985
Previous Articles Next Articles
Wei Yanzhao1, Zheng Xiaohan2, Gao Shijun1, Huang Ting2, Wei Xufang2, Chen Xinxu3, Zhao Zhenqiang3
Received:
2021-10-11
Accepted:
2022-01-13
Online:
2023-01-08
Published:
2022-06-06
Contact:
Zhao Zhenqiang, MD, Chief physician, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan Province, China
Chen Xinxu, Master, Attending physician, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan Province, China
About author:
Wei Yanzhao, Master candidate, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Provincial Key Laboratory of Tropical Brain Research and Translation, Haikou 570100, Hainan Province, China
Supported by:
CLC Number:
Wei Yanzhao, Zheng Xiaohan, Gao Shijun, Huang Ting, Wei Xufang, Chen Xinxu, Zhao Zhenqiang. Expression of autocrine macrophage migration inhibitory factor and its receptors of human embryonic stem cells[J]. Chinese Journal of Tissue Engineering Research, 2023, 27(1): 34-41.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.2 胚胎干细胞相关因子的表达 免疫荧光染色结果如图2所示,DAPI染胞核呈蓝色荧光,绿色荧光的深浅表示胚胎干细胞中MIF的表达水平,绿色越深,分布越密集,表明MIF表达水平越高,红色荧光的深浅表示MIF相关受体CD74、CD44、CXCR2、CXCR4、CXCR7在胚胎干细胞中的表达水平,红色越深,分布越密集,表明相关受体表达水平越高。在胚胎干细胞上呈现绿色强荧光,细胞膜和细胞质都有分布,其中胞膜分布密集,胞质分散稀疏,表明MIF在细胞膜表达水平较高。CXCR2和CXCR7的红色荧光较强,表明胚胎干细胞上高表达这2种MIF受体,CD74、CD44、CXCR4的荧光强度明显较弱,表明这些受体表达水平较低。H9细胞相关蛋白Western blot检测结果显示,与内参相比,MIF、CXCR2、CXCR7表达量较高,而CD74、CD44、CXCR4的表达量明显偏低,见图3。"
[1] CHEN J, WANG Y, WANG C, et al. LncRNA Functions as a New Emerging Epigenetic Factor in Determining the Fate of Stem Cells. Front Genet. 2020;11:277. [2] THOMSON JA, ITSKOVITZ-ELDOR J, SHAPIRO SS, et al. Embryonic stem cell lines derived from human blastocysts. Science.1998;282(5391):1145-1147. [3] ZAKRZEWSKI W, DOBRZYNSKI M, SZYMONOWICZ M, et al. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(1):68. [4] NERI S. Genetic Stability of Mesenchymal Stromal Cells for Regenerative Medicine Applications: A Fundamental Biosafety Aspect. Int J Mol Sci. 2019;20(10):2406. [5] TILLMANN S, BERNHAGEN J, NOELS H. Arrest Functions of the MIF Ligand/Receptor Axes in Atherogenesis. Front Immunol. 2013;4:115. [6] GUNTHER S, FAGONE P, JALCE G, et al. Role of MIF and D-DT in immune-inflammatory, autoimmune, and chronic respiratory diseases: from pathogenic factors to therapeutic targets. Drug Discov Today. 2019;24(2):428-439. [7] KLEMKE L, DE OLIVEIRA T, WITT D, et al. Hsp90-stabilized MIF supports tumor progression via macrophage recruitment and angiogenesis in colorectal cancer. Cell Death Dis. 2021;12(2):155. [8] NAGARAJAN P, TOBER KL, RIGGENBACH JA, et al. MIF antagonist (CPSI-1306) protects against UVB-induced squamous cell carcinoma. Mol Cancer Res. 2014; 12(9):1292-1302. [9] GORDON-WEEKS AN, LIM SY, YUZHALIN AE, et al. Macrophage migration inhibitory factor: a key cytokine and therapeutic target in colon cancer. Cytokine Growth Factor Rev. 2015;26(4):451-461. [10] OLIVEIRA CS, DE BOCK CE, MOLLOY TJ, et al. Macrophage migration inhibitory factor engages PI3K/Akt signalling and is a prognostic factor in metastatic melanoma. BMC Cancer. 2014;14: 630. [11] LIAO B, ZHONG BL, LI Z, et al. Macrophage migration inhibitory factor contributes angiogenesis by up-regulating IL-8 and correlates with poor prognosis of patients with primary nasopharyngeal carcinoma. J Surg Oncol. 2010;102(7):844-851. [12] WADGAONKAR R, SOMNAY K, GARCIA JG. Thrombin induced secretion of macrophage migration inhibitory factor (MIF) and its effect on nuclear signaling in endothelium. J Cell Biochem. 2008;105(5):1279-1288. [13] AMIN MA, HAAS CS, ZHU K, et al. Migration inhibitory factor up-regulates vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 via Src, PI3 kinase, and NFkappaB. Blood. 2006;107(6):2252-2261. [14] XIE J, YANG L, TIAN L, et al. Macrophage Migration Inhibitor Factor Upregulates MCP-1 Expression in an Autocrine Manner in Hepatocytes during Acute Mouse Liver Injury. Sci Rep. 2016;6:27665. [15] MA H, WANG J, THOMAS DP, et al. Impaired macrophage migration inhibitory factor-AMP-activated protein kinase activation and ischemic recovery in the senescent heart. Circulation. 2010;122(3):282-292. [16] LUE H, THIELE M, FRANZ J, et al. Macrophage migration inhibitory factor (MIF) promotes cell survival by activation of the Akt pathway and role for CSN5/JAB1 in the control of autocrine MIF activity. Oncogene. 2007;26(35):5046-5059. [17] LANG T, FOOTE A, LEE J P, et al. MIF: Implications in the Pathoetiology of Systemic Lupus Erythematosus. Front Immunol. 2015;6:577. [18] SINITSKI D, KONTOS C, KRAMMER C, et al. Macrophage Migration Inhibitory Factor (MIF)-Based Therapeutic Concepts in Atherosclerosis and Inflammation. Thromb Haemost. 2019;119(4):553-566. [19] KANG I, BUCALA R. The immunobiology of MIF:function, genetics and prospects for precision medicine. Nat Rev Rheumatol. 2019;15(7):427-437. [20] ALAMPOUR-RAJABI S, EL BO, ROT A, et al. MIF interacts with CXCR7 to promote receptor internalization, ERK1/2 and ZAP-70 signaling, and lymphocyte chemotaxis. FASEB J. 2015;29(11):4497-4511. [21] KLASEN C, OHL K, STERNKOPF M, et al. MIF promotes B cell chemotaxis through the receptors CXCR4 and CD74 and ZAP-70 signaling. J Immunol. 2014; 192(11):5273-5284. [22] JANKAUSKAS SS, WONG D, BUCALA R, et al. Evolving complexity of MIF signaling. Cell Signal. 2019;57:76-88. [23] XU X, PANG J, CHEN Y, et al. Macrophage Migration Inhibitory Factor (MIF) Deficiency Exacerbates Aging-Induced Cardiac Remodeling and Dysfunction Despite Improved Inflammation: Role of Autophagy Regulation. Sci Rep. 2016;6: 22488. [24] LIU Y, ZHAO L, JU Y, et al. A novel androstenedione derivative induces ROS-mediated autophagy and attenuates drug resistance in osteosarcoma by inhibiting macrophage migration inhibitory factor (MIF). Cell Death Dis. 2014;5:e1361. [25] YAO Y, DENG Q, SONG W, et al. MIF Plays a Key Role in Regulating Tissue-Specific Chondro-Osteogenic Differentiation Fate of Human Cartilage Endplate Stem Cells under Hypoxia. Stem Cell Reports. 2016;7(2):249-262. [26] CUI J, ZHANG F, WANG Y, et al. Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways. Int J Mol Med. 2016;37(5):1299-1309. [27] ZHANG X, CHEN L, WANG Y, et al. Macrophage migration inhibitory factor promotes proliferation and neuronal differentiation of neural stem/precursor cells through Wnt/beta-catenin signal pathway. Int J Biol Sci. 2013;9(10):1108-1120. [28] GILFILLAN M, DAS P, SHAH D, et al. Inhibition of microRNA-451 is associated with increased expression of Macrophage Migration Inhibitory Factor and mitgation of the cardio-pulmonary phenotype in a murine model of Bronchopulmonary Dysplasia. Respir Res. 2020;21(1):92. [29] BAYRAKTAR S, TANYERI BB, KILIC U. Umbilical cord levels of macrophage migration inhibitory factor in neonatal respiratory distress syndrome. Turk J Med Sci. 2021; 51(2):722-726. [30] SUMAIYA K, LANGFORD D, NATARAJASEENIVASAN K, et al. Macrophage migration inhibitory factor (MIF): A multifaceted cytokine regulated by genetic and physiological strategies. Pharmacol Ther. 2021;108024. doi: 10.1016/j.pharmthera.2021.108024. [31] VERJANS E, NOETZEL E, BEKTAS N, et al. Dual role of macrophage migration inhibitory factor (MIF) in human breast cancer. BMC Cancer. 2009;9:230. [32] FUJIHARA Y, HIKITA A, TAKATO T, et al. Roles of macrophage migration inhibitory factor in cartilage tissue engineering. J Cell Physiol. 2018;233(2):1490-1499. [33] YAO J, LENG L, SAULER M, et al. Transcription factor ICBP90 regulates the MIF promoter and immune susceptibility locus. J Clin Invest. 2016;126(2):732-744. [34] KIM J, GEE HY, LEE MG. Unconventional protein secretion - new insights into the pathogenesis and therapeutic targets of human diseases. J Cell Sci. 2018; 131(12):jcs213686. [35] EICKHOFF R, WILHELM B, RENNEBERG H, et al. Purification and characterization of macrophage migration inhibitory factor as a secretory protein from rat epididymis: evidences for alternative release and transfer to spermatozoa. Mol Med. 2001;7(1):27-35. [36] BILSBORROW JB, DOHERTY E, TILSTAM P V, et al. Macrophage migration inhibitory factor (MIF) as a therapeutic target for rheumatoid arthritis and systemic lupus erythematosus. Expert Opin Ther Targets. 2019.23(9):733-744. [37] TILSTAM PV, PANTOURIS G, CORMAN M, et al. A selective small-molecule inhibitor of macrophage migration inhibitory factor-2 (MIF-2), a MIF cytokine superfamily member, inhibits MIF-2 biological activity. J Biol Chem. 2019;294(49):18522-18531. [38] STADTMANN A, ZARBOCK A. CXCR2: From Bench to Bedside. Front Immunol. 2012;3:263. [39] PUCHERT M, ENGELE J. The peculiarities of the SDF-1/CXCL12 system: in some cells, CXCR4 and CXCR7 sing solos, in others, they sing duets. Cell Tissue Res. 2014;355(2):239-253. [40] CHATTERJEE M, BORST O, WALKER B, et al. Macrophage migration inhibitory factor limits activation-induced apoptosis of platelets via CXCR7-dependent Akt signaling. Circ Res. 2014;115(11):939-949. [41] STARLETS D, GORE Y, BINSKY I, et al. Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival. Blood. 2006;107(12):4807-4816. [42] GORE Y, STARLETS D, MAHARSHAK N, et al. Macrophage migration inhibitory factor induces B cell survival by activation of a CD74-CD44 receptor complex. J Biol Chem. 2008;283(5):2784-2792. [43] COURNIA Z, LENG L, GANDAVADI S, et al. Discovery of human macrophage migration inhibitory factor (MIF)-CD74 antagonists via virtual screening. J Med Chem. 2009;52(2):416-424. [44] SHAUL YD, SEGER R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta. 2007;1773(8):1213-1226. [45] STAMATIADES GA, KAISER UB. Gonadotropin regulation by pulsatile GnRH: Signaling and gene expression. Mol Cell Endocrinol. 2018;463:131-141. [46] VOSKAS D, LING LS, WOODGETT JR. Signals controlling un-differentiated states in embryonic stem and cancer cells: role of the phosphatidylinositol 3’ kinase pathway. J Cell Physiol. 2014;229(10):1312-1322. [47] SATO N, SANJUAN IM, HEKE M, et al. Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol. 2003;260(2):404-413. [48] PALING NR, WHEADON H, BONE HK, et al. Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. J Biol Chem. 2004;279(46):48063-48070. [49] SHPARBERG RA, GLOVER HJ, MORRIS MB. Modeling Mammalian Commitment to the Neural Lineage Using Embryos and Embryonic Stem Cells. Front Physiol. 2019;10:705. [50] BRAZIL DP, YANG ZZ, HEMMINGS BA. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci. 2004;29(5):233-242. [51] TAHIR SA, GAO J, MIURA Y, et al. Autoimmune antibodies correlate with immune checkpoint therapy-induced toxicities. Proc Natl Acad Sci U S A. 2019;116(44): 22246-22251. [52] RAJASEKARAN D, GRONING S, SCHMITZ C, et al. Macrophage Migration Inhibitory Factor-CXCR4 Receptor Interactions: EVIDENCE FOR PARTIAL ALLOSTERIC AGONISM IN COMPARISON WITH CXCL12 CHEMOKINE. J Biol Chem. 2016;291(30):15881-15895. |
[1] | Li Rui, Liu Zhen, Guo Zige, Lu Ruijie, Wang Chen. Aspirin-loaded chitosan nanoparticles and polydopamine modified titanium sheets improve osteogenic differentiation [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(3): 374-379. |
[2] | Ning Ziwen, Wang Xu, Shi Zhengliang, Qin Yihua, Wang Guoliang, Jia Di, Wang Yang, Li Yanlin. Meniscal injury repair methods for non-blood supply area [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(3): 420-426. |
[3] | Wang Kaiyu, Hu Peng, Wei Zairong, Huang Guangtao, Zhou Jian, He Guijia, Nie Kaiyu. Use of expanders and implants in breast reconstruction complicated with infection [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(3): 461-469. |
[4] | Ma Munan, Xie Jun, Sang Yuchao, Huang Lei, Zhang Guodong, Yang Xiaoli, Fu Songtao. Electroacupuncture combined with bone marrow mesenchymal stem cells in the treatment of chemotherapy-induced premature ovarian insufficiency in rats [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(1): 1-7. |
[5] | Zhang Yujuan, Yuan Yitong, Du Ruochen, Tian Feng, Fu Yuan, Wang Chunfang. miR-31 promotes the proliferation and migration of bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(1): 66-71. |
[6] | Gao Yixuan, Wang Lingfeng, Ba Te, Li Fang, Cao Shengjun, Li Junliang, Zhou Biao, Chen Qiang. Adipose-derived stem cells overexpressing growth hormone promote proliferation and migration of fibroblasts [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(1): 8-14. |
[7] | Liu Siqi, Wu Mingrui, Qiao Lingran, Xie Liying, Chen Siyu, Han Zhibo, Zuo Lin. Effects of hydrogel loaded with human umbilical cord mesenchymal stem cells on diabetic wound repair in mice [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(1): 21-27. |
[8] | Fu Chunmei, Zhang Pu, Wang Yang, Li Xiaolin, Xue Yan, Fu Jie, Zhang Cixian, Yang Yujuan, Duan Yaya, Feng Kai. Allogeneic hematopoietic stem cell transplantation in the treatment of 24 patients with severe aplastic anemia [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(1): 15-20. |
[9] | Yang Yan, Wang Jingxian, Zhang Ronghong, Li Chen, Fan Anran, Cui Dongbing, Wu Shumei. Effects of conditioned media of different sources on the proliferation of human dental pulp stem cells [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(1): 49-53. |
[10] | Lan Qian, Gu Yangcong, Xiao Xin, Bi Xueting, Li Na. Human periodontal ligament stem cells-derived exosomes interfere with the proliferation and differentiation of MC3T3-E1 cells [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(1): 54-58. |
[11] | Huang Wenjun, Zhou Yafei, Wang Jie, Li Huan, Zhang Yanmin, Zhou Rui. Establishment and identification of a protocol for highly efficient differentiation of hepatocytes from human pluripotent stem cells [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(1): 28-33. |
[12] | Zhao Jufen, Ma Rong, Cao Jia, Yu Chuanyang, Tao Xiang, Wang Jia, Wang Libin. Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 beta on stemness expression in breast cancer stem cells [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(1): 59-65. |
[13] | Feng Hao, Zhang Bin, Wang Jianping. Bone marrow mesenchymal stem cell transplantation can improve bone metabolism in osteoporotic rats [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(1): 72-75. |
[14] | Huang Chuwen, Jiang Hua, Li Minqing. Complications and death causes of peripheral blood stem cell transplantation in the treatment of thalassemia major [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(1): 42-48. |
[15] | Liu Runyuan, Dong Ming, Han Wenqing, Dong Juhong, Niu Weidong. Application and progress of small extracellular vesicles in periodontal and pulp regeneration [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(1): 83-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||