Chinese Journal of Tissue Engineering Research
Previous Articles Next Articles
Wang Zi-wei, Tian Jing
Received:
2013-07-15
Revised:
2013-07-17
Online:
2013-08-13
Published:
2013-08-13
Contact:
Tian Jing, Master, Associate chief physician, Professor, Master’s supervisor, Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong Province, China
Tian_jing6723@yahoo.com.cn
About author:
Wang Zi-wei, Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong Province, China
memantine1990@gmail.com
CLC Number:
Wang Zi-wei, Tian Jing. Sclerostin monoclonal antibody in the treatment of osteoporosis[J]. Chinese Journal of Tissue Engineering Research, doi: 10.3969/j.issn.2095-4344.2013.33.019.
2.1 骨质疏松的常规治疗及局限性 目前治疗骨质疏松的药物繁多,但均存在各自的局限性。在抑制骨分解的药物中,二膦酸盐类药物通过抑制破骨细胞功能而发挥作用,并因其对骨组织的高度亲和力和长期安全可行性而成为常用口服药[1],但二膦酸盐类无法促进骨形成,在抑制骨吸收方面的作用并不完全[4],且口服用药后人体吸收剂量仅为服用量的1%[5];静脉注射可导致二膦酸盐钙螯合物沉积,不适用于有血栓栓塞性疾病或肾功能不全者。地诺单抗(Denosumab)是另一种抑制骨分解的新型药物,于2010年6月被美国食品与药品管理局批准治疗绝经后女性骨质疏松,具有抑制破骨细胞激活与分化的功能[5]。Yee等[6]的研究发现,每4周接受皮下注射120 mg地诺单抗药物的患有癌症骨转移的受试者中,有5%出现下颌骨坏死,因此其安全性有待进一步证实。甲状旁腺素类药为疗效显著的合成药物代表,其能促进骨形成,增加骨密度和骨强度,减轻骨折风险[7];但此类药物与地诺单抗同样需皮下注射,应用不便,且甲状旁腺素不可用于骨骺线尚未闭合的青少年患者[5]。钙剂、维生素D和降钙素是目前对于骨质疏松的常规治疗药物[8],但单纯应用钙剂治疗可增加心血管疾病风险[9]。而传统骨质疏松药物多注重于降低骨破坏从而减轻骨折风险,而随着对治疗骨质疏松药物的探究中,通过刺激骨形成从而增加骨量及骨强度的方法逐渐得到肯定。 2.2 骨硬化蛋白的分子结构和特性 骨硬化蛋白由213个氨基酸组成,含8个半胱氨酸,组成4个二硫键,有2个指型结构[10]。骨硬化蛋白曾被认为与已知的神经母细胞瘤中的异常分化筛选基因糖蛋白家族有相似功能,即负向调控骨形态发生蛋白活动[11]。但近年来的研究表明,骨硬化蛋白可与Wnt通路共受体——低密度脂蛋白受体相关蛋白5/6结合,从而调控骨的生长[12]。Weidauer等[10]以核磁共振技术测定骨硬化蛋白的三维结构,推测其与Wnt通路共受体低密度脂蛋白受体相关蛋白5/6相互作用的位点位于第2个指型结构上。 编码骨硬化蛋白的基因为SOST[13-14],位于常染色体17q12-21处,其表达具有高度的组织特异性。骨硬化蛋白仅存在于人和小鼠的骨组织中,且其分泌仅局限于骨细胞[15],这一组织特异性提高了治疗疾病的针对性降低了不良反应[16]。 年龄、性别、骨负重减少及低甲状旁腺素水平都可使体循环中的骨硬化蛋白水平增高;相反地,机械负重和甲状旁腺素的增加可以减少SOST转录及表达水平[17-20]。在绝经后女性中,雌激素水平与骨硬化蛋白水平负相关[21]。骨硬化蛋白在机体其他器官中也有作用,如可加快慢性肾疾病进展等。人类钙化主动脉瓣及小鼠模型中钙化的血管平滑肌细胞中均可检测到骨硬化蛋白[3, 22]。Román-García等[23]推测,骨硬化蛋白等Wnt通路抑制物在钙化血管中的表达可能是对进一步钙化的防御行为。 2.3 骨硬化蛋白及其单克隆抗体对骨代谢的影响 骨硬化蛋白本身对成骨细胞分化、矿化及骨密度、骨强度均具有抑制作用,其结果表现为使骨合成代谢处于静止状态而不影响骨分解代谢。根据这种负向调节骨代谢的特性,在体外试验中,恶性肿瘤细胞诱导骨硬化蛋白的表达,从而抑制骨转移处成骨细胞生长。这一现象提示骨硬化蛋白可能在抑制乳腺癌骨转移及骨髓瘤所致骨疾病中起抑制作用扮演重要角色[24]。SOST转基因小鼠骨硬化蛋白表达增加可导致骨质疏松,而敲除SOST基因的小鼠可表现为骨密度增 加[25]。研究表明,SOST基因功能丧失型突变可以导致骨硬化病及van Buchem病的发生[11]。 骨硬化蛋白的单克隆抗体对骨代谢的影响则集中体现在对骨硬化蛋白的拮抗作用上[26]。骨硬化蛋白单克隆抗体在刺激成骨活动的同时,不会刺激破骨活动,即其对骨合成代谢有显著刺激作用[27]。同时,在接受骨硬化蛋白单克隆抗体的临床受试者体内甚至出现骨溶解标志物血清C端肽水平的降低,表明其具有抑制骨分解的作用[4]。 2.4 骨硬化蛋白及其单克隆抗体的可能作用机制 2.4.1 Wnt通路 Wnt是一种分泌糖蛋白,其与1个由7种卷曲蛋白家族组成的跨膜受体及由低密度脂蛋白相关受体蛋白低密度脂蛋白受体相关蛋白5/6构成的共受体结合后,能使胞内信号分子β-链蛋白积聚并转移到细胞核,并在核上与转录因子T细胞因子/淋巴增强因子1共同促进靶基因转录[2],促进成骨细胞生成与分化,同时抑制脂肪形成[28]。已有研究表明,Wnt信号通路在人体四肢由近端向远端生长过程以及随后的软骨形成、骨形成、关节形成及肌肉生长中均起到重要作用[29]。相反地,若Wnt缺失,β-链蛋白则与肿瘤抑制蛋白结肠腺瘤性息肉病基因、轴蛋白、糖原合酶激酶及酪蛋白激酶1组成复合体,使β-链蛋白磷酸化并降解[11, 30]。同时,发生渐进性功能缺失突变后的低密度脂蛋白受体相关蛋白5共受体与家族遗传性骨质疏松有关,而另一类低密度脂蛋白受体相关蛋白5错义突变则与常染色体显性遗传高骨质量病有关[31]。有研究显示Wnt/β-链蛋白信号转导过程中可能出现肿瘤抑制蛋白的突变,从而激活肿瘤相关基因,促进肿瘤进展[32],其正确性有待进一步确定。 骨硬化蛋白通过与低密度脂蛋白受体相关蛋白5以及与低密度脂蛋白受体相关蛋白5密切相关的共受体低密度脂蛋白受体相关蛋白6的结合,阻断了经典Wnt信号通路,其单克隆抗体则通过拮抗其作用而保证Wnt信号通路的正常传导,使骨形成活动顺利进 行[16, 30, 33]。但经典Wnt信号通路并非与骨硬化蛋白竞争结合低密度脂蛋白受体相关蛋白5/6[34],这可能是因为骨硬化蛋白通过结合共受体导致低密度脂蛋白受体相关蛋白5/6的内化而发挥作用[12, 35],也可能是它拮抗了一个与Wnt信号正相关的未知信号[11, 36]。 2.4.2 细胞外基质磷酸糖蛋白-酸性丝氨酸及天冬氨酸基序轴 Atkins等[37]将人类原始成骨细胞暴露于重组人骨硬化蛋白中35 d,检测不同剂量、不同时间条件下骨硬化蛋白对体外骨矿化活动的调节作用,证实了骨硬化蛋白可负向调节成人骨矿化及前体骨细胞中的细胞活动。实验发现,重组人骨硬化蛋白明显增加前体骨细胞标志物E11表达水平,并减少骨成熟标志物——牙本质基质酸性磷酸蛋白1的表达。同时,重组人骨硬化蛋白促进人细胞外基质磷酸糖蛋白的产生,抑制X染色体上的内肽酶同源磷酸化基因基因表达。免疫染色法表明重组人骨硬化蛋白可增加内源细胞外基质磷酸糖蛋白-酸性丝氨酸及天冬氨酸基序水平,而重组人骨硬化蛋白抗体可通过中和内源细胞外基质磷酸糖蛋白-酸性丝氨酸及天冬氨酸基序从而拮抗重组人骨硬化蛋白的矿化效应[38-39]。这些均提示细胞外基质磷酸糖蛋白-酸性丝氨酸及天冬氨酸基序轴在调节骨代谢活动中的抑制作用。Atkins等[37]还发现SOST mRNA在羟脯氨酸小鼠模型中呈高表达,提示骨硬化蛋白可增高细胞外基质磷酸糖蛋白-酸性丝氨酸及天冬氨酸基序水平,也可导致骨矿化缺陷表型的出现。骨硬化蛋白可通过在前成骨细胞时期调节X染色体上的内肽酶同源磷酸化基因/细胞外基质磷酸糖蛋白轴和控制骨矿化作用而抑制骨形成。 2.4.3 其他机制 除以上两大机制之外,骨硬化蛋白单克隆抗体也通过其他方式作用于骨代谢。如骨硬化蛋白可诱导成骨细胞凋亡程序启动,缩短成骨细胞的寿命,加速其死亡;骨硬化蛋白单克隆抗体对其的拮抗作用保护了成骨活动[11, 40]。又如,骨硬化蛋白单克隆抗体在刺激骨形成的同时,也可抑制骨分解。此现象可能是骨硬化蛋白单克隆抗体对破骨细胞的直接抑制作用,也可能是因其对骨形成显著刺激而造成的对破骨细胞的间接作用[4]。 2.5 骨硬化蛋白单克隆抗体用于临床骨质疏松和骨折的治疗的可行性分析 目前已有大量动物实验表明,骨硬化蛋白单克隆抗体能有效治疗骨质疏松。Li等[41-42]发现,大鼠摘除卵巢1年后,因雌激素水平显著下降可导致骨丢失;使用骨硬化蛋白单克隆抗体25 mg/kg剂量对大鼠皮下注射,治疗5周后,大鼠体内出现大量骨合成——在骨小梁、骨膜、皮质骨内外表面均可发现显著骨形成。同时,新形成的皮质骨保持着正常的片层状结构,而骨小梁的孔隙率则被降低,增加了骨强度;还发现,应用骨硬化蛋白单克隆抗体的大鼠的破骨细胞水平降低,说明典型的成骨细胞-破骨细胞耦联关系在此实验中被打破,在成骨的同时未出现破骨细胞反应性地活动增加,提示骨硬化蛋白单克隆抗体与二膦酸盐类药物同样具有抑制破骨细胞的溶骨作用,并另具有刺激成骨细胞活动的功能。与对照组相比,实验组大鼠皮质骨与松质骨的骨强度和骨密度均有明显增加,由此提示骨硬化蛋白单克隆抗体在绝经后骨质疏松治疗领域的可能前景。在结肠炎小鼠模型中应用骨硬化蛋白单克隆抗体后,减少了由慢性炎症反应介导的破骨细胞活动所导致的骨丢失,并使骨合成与骨强度增加[43-44]。 骨硬化蛋白在骨骼负重减轻时表达水平增高,相反地在增加骨骼负重时表达水平降低。Agholme等[45]根据这一现象设计实验,探究在骨骼无负重情况下是否会刺激骨硬化蛋白单克隆抗体表达。实验将48只10周龄大鼠均分为4组,并将2组大鼠右后肢注射肉毒杆菌毒素致瘫,即为骨骼无负重模型。3 d后将此24只大鼠右胫骨近端打入钢螺钉。3 d后,一组给予骨硬化蛋白单克隆抗体,另一组予生理盐水,每周2次;另24只未致瘫小鼠同分为2组并分别予骨硬化蛋白单克隆抗体或生理盐水,作为骨骼负重模型。致瘫组打入钢螺丝钉4周后测量其抗拉力值,用于评估骨创伤后愈合能力。结果发现,无负重条件下骨抗拉力值降低;而无论是否负重,应用骨硬化蛋白单克隆抗体后,大鼠的骨抗拉力均增加,但负重组应用骨硬化蛋白单克隆抗体后的反应性骨强度增加优于未负重组。Ominsky及Tian等[46-47]也在各自的实验中发现,在大鼠和小鼠骨折或者大腿制动模型中,骨硬化蛋白单克隆抗体可增加骨折愈合处的桥接与骨强度,从而加快骨折恢复,且这些作用均不被阿仑膦酸钠(双膦酸盐类药物)钝化。 在猕猴模型中皮下注射应用人骨硬化蛋白单克隆抗体2个月后,松质骨及皮质骨的骨强度、骨密度均有增加,而骨吸收减少,此变化与药物剂量呈正相关[48]。在成年雌性大鼠模型中应用骨硬化蛋白单克隆抗体,可使红骨髓及黄骨髓代谢活跃,在腰椎的效应略大于尾椎[49]。尽管以上实验均为短期试验,但都提示了骨硬化蛋白抑制物可增加骨形成的作用以及其在临床应用治疗骨质疏松及骨折愈合的可能。并且,在这些动物试验中,关于骨硬化蛋白单克隆抗体的不良反应尚未有报导[48, 50]。 目前,骨硬化蛋白单克隆抗体已作为治疗人骨质疏松药物进入临床试验阶段,关于长期使用此药物的安全性也正在研究中。目前已知骨硬化蛋白单克隆抗体通过对骨硬化蛋白特异性结合而产生阻滞作用,从而维持骨含量、提高骨密度及骨强度。 Padhi等[4]于2006年12月至2010年6月首次将骨硬化蛋白单克隆抗体用于随机双盲安慰剂对照的临床试验中。他们在85 d中采取皮下注射或静脉注射等方式,对72名健康男性或绝经后女性使用一种名为AMG 785的骨硬化蛋白单克隆抗体制剂(其中56名受试者皮下注射剂量分别为0.1,0.3,1,3,5,10 mg/kg的安慰剂或AMG 785;另16名受试者静脉注射分别为1或10 mg/kg的安慰剂或AMG),监测其体内骨形成标志物-Ⅰ型胶原N肽前体、骨特异性碱性磷酸酶、骨钙素,以及骨吸收标志物-血清C端肽的水平变化。数据显示,在85 d的临床试验后,受试者骨密度有显著提高。与安慰剂组对比,接受AMG 785的受试者腰椎骨密度最高增长5.3%,骨盆骨密度最高增长2.8%;应用AMG 785后,受试者骨形成标志物增加,骨吸收标志物减少,且此变化与AMG 785剂量相关。由此得出AMG 785在促进骨形成的同时抑制了骨吸收,可成为机体耐受性好且疗效显著的骨质疏松治疗药物。 2.6 骨硬化蛋白单克隆抗体用于临床骨质疏松和骨折的治疗的不良反应分析 由于骨硬化蛋白单克隆抗体的长期临床应用的安全性尚未保证,可以推测如单克隆抗体应用过量,可导致骨的过度增生和重建,从而引起骨硬化症、Van Buchem病等;骨重建后形状不规则,或骨过度增生发生在解剖结构较精细的骨组织时,不良反应更加明显。如发生在腕骨时可导致腕管综合征,发生在脊椎时可使神经根受刺激,从而引起疼痛、神经受损等一系列症状及病理改变[51]。 此外,在Padhi等[4]在72名健康受试者的实验中,发现在56名接受皮下注射安慰剂或AMG 785的受试者中出现最多的不良反应包括注射部位红斑、背部疼痛、头痛、便秘、注射部位出血、关节疼痛与眩晕;而在另外16名接受静脉注射的受试者中,仅报道了1名受试者出现便秘、头痛等症状。这些不良反应均为轻微症状。在72名受试者中,报道了1例与实验相关的严重不良反应,即其中1人接受皮下注射10 mg/kg AMG 785后出现非特异性肝炎。该受试者于接受注射第1天即出现恶心、呕吐,第3天时,其丙氨酸转移酶和天门冬氨酸转移酶分别为正常值的13倍和6倍,受试第26天时该严重不良反应症状缓解。"
[1] van Boven JF, de Boer PT, Postma MJ, et al. Persistence with osteoporosis medication among newly-treated osteoporotic patients. J Bone Miner Metab. 2013. in press. [2] Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469-480. [3] Viaene L, Behets GJ, Claes K, et al. Sclerostin: another bone-related protein related to all-cause mortality in haemodialysis? Nephrol Dial Transplant. 2013. in press. [4] Padhi D, Jang G, Stouch B, et al. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res. 2011;26(1):19-26. [5] Warriner AH, Saag KG. Osteoporosis diagnosis and medical treatment. Orthop Clin North Am. 2013;44(2):125-135. [6] Yee AJ, Raje NS. Denosumab, a RANK ligand inhibitor, for the management of bone loss in cancer patients. Clin Interv Aging. 2012;7:331-338. [7] Lim V, Clarke BL. New therapeutic targets for osteoporosis: beyond denosumab. Maturitas. 2012;73(3):269-272. [8] 李梅,周学瀛.骨质疏松症治疗新进展[J].国际内分泌代谢杂志, 2011,31(6):386-389. [9] Bolland MJ, Avenell A, Baron JA, et al. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ. 2010;341:c3691. [10] Weidauer SE, Schmieder P, Beerbaum M, et al. NMR structure of the Wnt modulator protein Sclerostin. Biochem Biophys Res Commun. 2009;380(1):160-165. [11] Moester MJ, Papapoulos SE, Löwik CW, et al. Sclerostin: current knowledge and future perspectives. Calcif Tissue Int. 2010;87(2):99-107. [12] Ellies DL, Viviano B, McCarthy J, et al. Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J Bone Miner Res. 2006;21(11): 1738-1749. [13] van Dinther M, Zhang J, Weidauer SE, et al. Anti-Sclerostin antibody inhibits internalization of Sclerostin and Sclerostin- mediated antagonism of Wnt/LRP6 signaling. PLoS One. 2013;8(4):e62295. [14] Balemans W, Van Hul W. Human genetics of SOST. J Musculoskelet Neuronal Interact. 2006;6(4):355-356. [15] Poole KE, van Bezooijen RL, Loveridge N, et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 2005;19(13):1842-1844. [16] 孙静,夏维波,姜艳.骨硬化蛋白:一个治疗骨质疏松的新靶点[J].国际内分泌代谢杂志,2010,30(4):236-238. [17] Drüeke TB, Lafage-Proust MH. Sclerostin: just one more player in renal bone disease? Clin J Am Soc Nephrol. 2011; 6(4):700-703. [18] Tu X, Rhee Y, Condon KW, et al. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone. 2012;50(1):209-217. [19] Sims NA. Building bone with a SOST-PTH partnership. J Bone Miner Res. 2010;25(2):175-177. [20] Jawad MU, Fritton KE, Ma T, et al. Effects of sclerostin antibody on healing of a non-critical size femoral bone defect. J Orthop Res. 2013;31(1):155-163. [21] Mödder UI, Clowes JA, Hoey K, et al. Regulation of circulating sclerostin levels by sex steroids in women and in men. J Bone Miner Res. 2011;26(1):27-34. [22] Zhu D, Mackenzie NC, Millán JL, et al. The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS One. 2011;6(5):e19595. [23] Román-García P, Carrillo-López N, Fernández-Martín JL, et al. High phosphorus diet induces vascular calcification, a related decrease in bone mass and changes in the aortic gene expression. Bone. 2010;46(1):121-128. [24] Gkotzamanidou M, Dimopoulos MA, Kastritis E, et al. Sclerostin: a possible target for the management of cancer-induced bone disease. Expert Opin Ther Targets. 2012;16(8):761-769. [25] Ryan ZC, Ketha H, McNulty MS, et al. Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium. Proc Natl Acad Sci U S A. 2013;110(15):6199-6204. [26] Gamie Z, Korres N, Leonidou A, et al. Sclerostin monoclonal antibodies on bone metabolism and fracture healing. Expert Opin Investig Drugs. 2012;21(10):1523-1534. [27] Okazaki R. Anti-sclerostin antibodies. Clin Calcium. 2011; 21(1):94-98. [28] Wei W, Zeve D, Suh JM, et al. Biphasic and dosage-dependent regulation of osteoclastogenesis by β-catenin. Mol Cell Biol. 2011;31(23):4706-4719. [29] Collette NM, Genetos DC, Murugesh D, et al. Genetic evidence that SOST inhibits WNT signaling in the limb. Dev Biol. 2010;342(2):169-179. [30] Silverman SL. Sclerostin. J Osteoporos. 2010;2010:941419. [31] Semenov MV, He X. LRP5 mutations linked to high bone mass diseases cause reduced LRP5 binding and inhibition by SOST. J Biol Chem. 2006;281(50):38276-38284. [32] Monroe DG, McGee-Lawrence ME, Oursler MJ, et al. Update on Wnt signaling in bone cell biology and bone disease. Gene. 2012;492(1):1-18. [33] Mosekilde L, Tørring O, Rejnmark L. Emerging anabolic treatments in osteoporosis. Curr Drug Saf. 2011;6(2):62-74. [34] Li X, Zhang Y, Kang H, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005; 280(20):19883-19887. [35] ten Dijke P, Krause C, de Gorter DJ, et al. Osteocyte-derived sclerostin inhibits bone formation: its role in bone morphogenetic protein and Wnt signaling. J Bone Joint Surg Am. 2008;90 Suppl 1:31-35. [36] Papapoulos SE. Targeting sclerostin as potential treatment of osteoporosis. Ann Rheum Dis. 2011;70 Suppl 1:i119-122. [37] Atkins GJ, Rowe PS, Lim HP, et al. Sclerostin is a locally acting regulator of late-osteoblast/preosteocyte differentiation and regulates mineralization through a MEPE-ASARM- dependent mechanism. J Bone Miner Res. 2011;26(7):1425-1436. [38] Salmon B, Bardet C, Khaddam M, et al. MEPE-derived ASARM peptide inhibits odontogenic differentiation of dental pulp stem cells and impairs mineralization in tooth models of X-linked hypophosphatemia. PLoS One. 2013;8(2):e56749. [39] Rowe PS. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr. 2012;22(1):61-86. [40] Lewiecki EM. Sclerostin monoclonal antibody therapy with AMG 785: a potential treatment for osteoporosis. Expert Opin Biol Ther. 2011;11(1):117-127. [41] Li X, Ominsky MS, Warmington KS, et al. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res. 2009;24(4):578-588. [42] van Bezooijen RL, Svensson JP, Eefting D, et al. Wnt but not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J Bone Miner Res. 2007; 22(1): 19-28. [43] Eddleston A, Marenzana M, Moore AR, et al. A short treatment with an antibody to sclerostin can inhibit bone loss in an ongoing model of colitis. J Bone Miner Res. 2009;24 (10):1662-1671. [44] Li X, Ominsky MS, Niu QT, et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. 2008;23(6):860-869. [45] Agholme F, Isaksson H, Li X, et al. Anti-sclerostin antibody and mechanical loading appear to influence metaphyseal bone independently in rats. Acta Orthop. 2011;82(5):628-632. [46] Ominsky MS, Li C, Li X, et al. Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J Bone Miner Res. 2011;26(5):1012-1021. [47] Tian X, Jee WS, Li X, et al. Sclerostin antibody increases bone mass by stimulating bone formation and inhibiting bone resorption in a hindlimb-immobilization rat model. Bone. 2011; 48(2):197-201. [48] Ominsky MS, Vlasseros F, Jolette J, et al. Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res. 2010;25(5):948-959. [49] Tian X, Setterberg RB, Li X, et al. Treatment with a sclerostin antibody increases cancellous bone formation and bone mass regardless of marrow composition in adult female rats. Bone. 2010;47(3):529-533. [50] Smith SY, Jolette J, Turner CH. Skeletal health: primate model of postmenopausal osteoporosis. Am J Primatol. 2009; 71(9):752-765. [51] Lane NE, Silverman SL. Anabolic therapies. Curr Osteoporos Rep. 2010;8(1):23-27. [52] Marenzana M, Greenslade K, Eddleston A, et al. Sclerostin antibody treatment enhances bone strength but does not prevent growth retardation in young mice treated with dexamethasone. Arthritis Rheum. 2011;63(8):2385-2395. [53] Li X, Ominsky MS, Warmington KS, et al. Increased bone formation and bone mass induced by sclerostin antibody is not affected by pretreatment or cotreatment with alendronate in osteopenic, ovariectomized rats. Endocrinology. 2011; 152(9):3312-3322. [54] Chen XX, Baum W, Dwyer D, et al. Sclerostin inhibition reverses systemic, periarticular and local bone loss in arthritis. Ann Rheum Dis. 2013. in press. |
[1] | Tang Hui, Yao Zhihao, Luo Daowen, Peng Shuanglin, Yang Shuanglin, Wang Lang, Xiao Jingang. High fat and high sugar diet combined with streptozotocin to establish a rat model of type 2 diabetic osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1207-1211. |
[2] | Li Zhongfeng, Chen Minghai, Fan Yinuo, Wei Qiushi, He Wei, Chen Zhenqiu. Mechanism of Yougui Yin for steroid-induced femoral head necrosis based on network pharmacology [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(8): 1256-1263. |
[3] | Hou Guangyuan, Zhang Jixue, Zhang Zhijun, Meng Xianghui, Duan Wen, Gao Weilu. Bone cement pedicle screw fixation and fusion in the treatment of degenerative spinal disease with osteoporosis: one-year follow-up [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 878-883. |
[4] | Li Shibin, Lai Yu, Zhou Yi, Liao Jianzhao, Zhang Xiaoyun, Zhang Xuan. Pathogenesis of hormonal osteonecrosis of the femoral head and the target effect of related signaling pathways [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(6): 935-941. |
[5] | Xiao Fangjun, Chen Shudong, Luan Jiyao, Hou Yu, He Kun, Lin Dingkun. An insight into the mechanism of Salvia miltiorrhiza intervention on osteoporosis based on network pharmacology [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 772-778. |
[6] | Liu Bo, Chen Xianghe, Yang Kang, Yu Huilin, Lu Pengcheng. Mechanism of DNA methylation in exercise intervention for osteoporosis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(5): 791-797. |
[7] | Zhong Yuanming, Wan Tong, Zhong Xifeng, Wu Zhuotan, He Bingkun, Wu Sixian. Meta-analysis of the efficacy and safety of percutaneous curved vertebroplasty and unilateral pedicle approach percutaneous vertebroplasty in the treatment of osteoporotic vertebral compression fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 456-462. |
[8] | Nie Shaobo, Li Jiantao, Sun Jien, Zhao Zhe, Zhao Yanpeng, Zhang Licheng, Tang Peifu. Mechanical stability of medial support nail in treatment of severe osteoporotic intertrochanteric fracture [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(3): 329-333. |
[9] | Yang Caihui, Liu Qicheng, Dong Ming, Wang Lina, Zuo Meina, Lu Ying, Niu Weidong. Serine/threonine protein kinases can promote bone destruction in mouse models of chronic periapical periodontitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(23): 3654-3659. |
[10] | Liu Chang, Li Datong, Liu Yuan, Kong Lingbo, Guo Rui, Yang Lixue, Hao Dingjun, He Baorong. Poor efficacy after vertebral augmentation surgery of acute symptomatic thoracolumbar osteoporotic compression fracture: relationship with bone cement, bone mineral density, and adjacent fractures [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3510-3516. |
[11] | Huo Hua, Cheng Yuting, Zhou Qian, Qi Yuhan, Wu Chao, Shi Qianhui, Yang Tongjing, Liao Jian, Hong Wei. Effects of drug coating on implant surface on the osseointegration [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3558-3564. |
[12] | Feng Guancheng, Fang Jianming, Lü Haoran, Zhang Dongsheng, Wei Jiadong, Yu Bingbing. How does bone cement dispersion affect the early outcome of percutaneous vertebroplasty [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3450-3457. |
[13] | Jiang Shengyuan, Li Dan, Jiang Jianhao, Shang-you Yang, Yang Shuye. Biological response of Co2+ to preosteoblasts during aseptic loosening of the prosthesis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(21): 3292-3299. |
[14] | Cai Qunbin, Yang Lijuan, Li Qiumin, Chen Xinmin, Zheng Liqin, Huang Peizhen, Lin Ziling, Jiang Ziwei . Feasibility of internal fixation removal of intertrochanteric fractures in elderly patients based on fracture mechanics [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(21): 3313-3318. |
[15] | Liu Yulin, Li Guotai. Combined effects of hyperbaric oxygen, vibration training and astaxanthin on bone mineral density, glucose metabolism and oxidative stress in diabetic osteoporosis rats [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(20): 3117-3124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||