Chinese Journal of Tissue Engineering Research ›› 2024, Vol. 28 ›› Issue (24): 3814-3821.doi: 10.12307/2024.607
Previous Articles Next Articles
Yan Huadong1, Zhang Zhong1, Zhao Gang2, 3, Li Jie1, Song Hua1, Sun Jianhua1, Liu Zhi1, Wang Mingming1, 2
Received:
2023-05-13
Accepted:
2023-07-08
Online:
2024-08-28
Published:
2023-11-20
Contact:
Wang Mingming, Doctoral candidate, Attending physician, Department of Orthopedics, Tengzhou Central People’s Hospital Affiliated to Jining Medical University, Tengzhou 277599, Shandong Province, China; Shandong University, Jinan 250100, Shandong Province, China
About author:
Yan Huadong, Master, Attending physician, Department of Orthopedics, Tengzhou Central People’s Hospital Affiliated to Jining Medical University, Tengzhou 277599, Shandong Province, China
Supported by:
CLC Number:
Yan Huadong, Zhang Zhong, Zhao Gang, Li Jie, Song Hua, Sun Jianhua, Liu Zhi, Wang Mingming. Biomechanical difference of different fixation methods in bone healing of distal tibial comminuted fractures analyzed by finite element method[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(24): 3814-3821.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
2.5 骨折愈合不同时期各模型中固定装置的应力分布情况 骨折愈合不同时期中,随着骨痂的成熟,2组固定模型中固定装置的应力逐渐降低。2种载荷下,外置接骨板组的应力均明显高于逆行髓内钉。术后3个月及以后,2种固定装置的应力明显降低,且在同一负荷下应力基本相同。 2组固定装置最大应力部位在同一时间不随载荷大小改变、保持在同一位置。在0,1个月时逆行髓内钉组应力集中部位位于髓内钉次近端螺钉和髓内钉之间的交点上,3个月及以后应力集中部位位于髓内钉最近端。在0,1个月时外置接骨板组应力集中部位位于骨折远端部分最近端螺钉和板孔之间的交点上,3个月及以后应力集中部位位于最近端螺钉和板孔之间的交点上。骨折愈合不同时期各模型胫骨应力集中部位应力情况见表11,应力云图见图8。 "
[1] RUSHDI I, CHE-AHMAD A, ABDUL-GHANI K, et al. Surgical Management of Distal Tibia Fracture: Towards An Outcome-based Treatment Algorithm. Malays Orthop J. 2020;14(3):57-65. [2] QIU XS, YUAN H, ZHENG X, et al. Locking plate as a definitive external fixator for treating tibial fractures with compromised soft tissue envelop. Arch Orthop Trauma Surg. 2014;134:383-388. [3] HIDAYAT L, TRIANGGA AFR, CEIN CR, et al. Low profile external fixation using locking compression plate as treatment option for management of soft tissue problem in open tibia fracture grade IIIA: A case series. Int J Surg Case Rep. 2022;93:106882. [4] KUHN S, APPELMANN P, PAIRON P, et al. The retrograde tibial nail: presentation and biomechanical evaluation of a new concept in the treatment of distal tibia fractures. Injury. 2014;45Suppl 1:S81-S86. [5] BARUA E, DAS S, DEOGHAER AB. Development of computational Tibia model to investigate stress shielding effect at healing stages. Mater Today Proc. 2018;5(5):13267-13275. [6] LIPPHAUS A, WITZEL U. Finite-Element Syntheses of Callus and Bone Remodeling: Biomechanical Study of Fracture Healing in Long Bones. Anat Rec (Hoboken, N.J. : 2007). 2018;301(12):2112-2121. [7] PERREN SM, FERNANDEZ A, REGAZZONI P. Understanding Fracture Healing Biomechanics Based on the “Strain” Concept and its Clinical Applications. Acta Chir Orthop Traumatol Cech. 2015;82(4):253-260. [8] ZHOU K, HE X, TAO X, et al. A biomechanical matched-pair comparison of two different locking plates for tibial diaphyseal comminuted fracture: carbon fiber-reinforced poly-ether-ether-ketone (CF-PEEK) versus titanium plates. J Orthop Surg Res. 2020;15(1):558. [9] AUGAT P, PENZKOFER R, NOLTE A, et al. Interfragmentary movement in diaphyseal tibia fractures fixed with locked intramedullary nails. J Orthop Trauma. 2008;22:30-36. [10] ELKINS J, MARSH JL, LUJAN T, et al. Motion Predicts Clinical Callus Formation: Construct-Specific Finite Element Analysis of Supracondylar Femoral Fractures. J Bone Joint Surg Am. 2016;98(4):276-284. [11] LI J, ZHAO X, HU X, et al. A theoretical analysis and finite element simulation of fixator-bone system stiffness on healing progression.J Appl Biomater Funct Mater. 2018;16(3):115-125. [12] 王明明,张中,孙建华,等.胫骨远端骨折伴软组织损伤3种不同微创固定方式的有限元分析[J].中国组织工程研究,2024,28(6): 879-885. [13] 刘晨东,胡孙君,张世民.三种新型内固定方式治疗胫骨平台双髁四象限骨折的有限元研究[J].中国修复重建外科杂志,2023,37(3): 290-295. [14] 董衍生,王永清,董黎敏,等.可吸收锁钉鞘预防股骨带锁髓内钉应力遮挡的有限元分析[J].天津理工大学学报,2018,34(3):42-47. [15] BYRNE DP, LACROIX D, PRENDERGAST PJ. Simulation of fracture healing in the tibia: mechanoregulation of cell activity using a lattice modeling approach. J Orthop Res. 2011;29(10):1496-1503. [16] 贾军锋,唐承杰,乐劲涛,等.胫骨远端骨折3种不同固定方式的有限元分析[J].中国组织工程研究,2019,23(32):5188-5194. [17] SOUZA JCM, PINHO SS, BRAZ MP, et al. Carbon fiber-reinforced PEEK in implant dentistry: A scoping review on the finite element method. Comput Methods Biomech Biomed Engin. 2021;24(12):1355-1367. [18] ZHOU K, YANG H. Effects of Bone-Plate Material on the Predicted Stresses in the Tibial Shaft Comminuted Fractures: A Finite Element Analysis.J Invest Surg. 2022;35(1):132-140. [19] 杨卫强,赵永明,丁童,等.动态锁定螺钉固定胫骨远端骨折的有限元分析[J].中国矫形外科杂志,2021,29(9):835-838. [20] LIU B, LV Y, LI X, et al. Influence of different fixation modes on biomechanical conduction of 3D printed prostheses for treating critical diaphyseal defects of lower limbs: A finite element study. Front Surg. 2022;9:959306. [21] ZHAO X, LI J, CHEN Y, et al. Investigation of load transfer process between external fixator and bone model by experimental and finite element methods. J Appl Biomater Funct Mater. 2019;17(1): 2280800019826512. [22] MARONGIU G, DOLCI A, VERONA M, et al. The biology and treatment of acute long-bones diaphyseal fractures: Overview of the current options for bone healing enhancement. Bone Rep. 2020;12:100249. [23] PERREN SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br. 2002;84(8): 1093-1110. [24] EPARI DR, GURUNG R, HOFMANN-FLIRI L, et al. Biphasic plating improves the mechanical performance of locked plating for distal femur fractures. J Biomech. 2021;115:110192. [25] 史金友,肖玉周,吴敏,等. 微动本质及骨折愈合生物力学分期的研究[J].中国修复重建外科杂志,2021,35(9):1205-1211. [26] GARDNER MJ, VAN DER MEULEN MC, DEMATRAKOPOULOS D, et al. In vivo cyclic axial compression affects bone healing in the mouse tibia. J Orthop Res. 2006;24:1679-1686. [27] BETTS DC, MULLER R. Mechanical regulation of bone regeneration: theories, models, and experiments. Front Endocrinol (Lausanne). 2014;5:211. [28] SAMIEZADEH S, AVVAL PT, FAWAZ Z, et al. On optimization of a composite bone plate using the selective stress shielding approach. J Mech Behav Biomed Mater. 2015;42:138-153. [29] MEHBOOB A, MEHBOOB H, KIM J, et al. Influence of initial biomechanical environment provided by fibrous composite intramedullary nails on bone fracture healing. Compos Struct. 2017; 175:123-134. [30] 丁晓红,徐世鹏,段朋云,等.骨折内固定接骨板生物力学评价及结构设计方法研究进展[J].上海理工大学学报,2022,44(5): 429-439+472. |
[1] | Li Zhifei, Yang Yin, Chen Hualong, Liang Qinqiu, Zhong Yuanming, Zhang Yisheng. Finite element analysis of the correlation between tilt angle of titanium cage and postoperative subsidence of titanium cage after anterior subtotal cervical corpectomy, decompression and fusion [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1313-1319. |
[2] | Chen Mengmeng, Bao Li, Chen Hao, Jia Pu, Feng Fei, Shi Guan, Tang Hai. Biomechanical characteristics of a novel interspinous distraction fusion device BacFuse for the repair of lumbar degenerative disease [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1325-1329. |
[3] | Liang Cheng, Zhang Linqi, Wang Guan, Li Wen, Duan Ke, Li Zhong, Lu Xiaobo, Zhuo Naiqiang. Finite element and biomechanical analysis of different implants in repair for unilateral unstable pelvic posterior ring injury [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1336-1341. |
[4] | Yang Junliang, Lu Tan, Xu Biao, Jiang Yaqiong, Wang Fucheng. Three-dimensional finite element analysis of effects of partial anterior cruciate ligament rupture on knee joint stress [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1347-1353. |
[5] | Weng Rui, Lin Dongxin, Guo Haiwei, Zhang Wensheng, Song Yuke, Lin Hongheng, Li Wenchao, Ye Linqiang. Abnormal types of intervertebral disc structure and related mechanical loading with biomechanical factors [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(9): 1436-1442. |
[6] | Xiaheida·Yilaerjiang, Nijiati·Tuerxun, Reyila·Kuerban, Baibujiafu·Yelisi, Chen Xin. Three-dimensional finite element analysis of the distribution pattern of stress in bone tissues with different characteristics [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(8): 1277-1282. |
[7] | Wang Qiang, Li Shiyun, Xiong Ying, Li Tiantian. Biomechanical changes of the cervical spine in internal fixation with different anterior cervical interbody fusion systems [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 821-826. |
[8] | Wei Yuanbiao, Lin Zhan, Chen Yanmei, Yang Tenghui, Zhao Xiao, Chen Yangsheng, Zhou Yanhui, Yang Minchao, Huang Feiqi. Finite element analysis of effects of sagittal cervical manipulation on intervertebral disc and facet joints [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 827-832. |
[9] | Zhang Rui, Wang Kun, Shen Zicong, Mao Lu, Wu Xiaotao. Effects of endoscopic foraminoplasty and laminoplasty on biomechanical properties of intervertebral disc and isthmus [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 833-839. |
[10] | Kang Zhijie, Cao Zhenhua, Xu Yangyang, Zhang Yunfeng, Jin Feng, Su Baoke, Wang Lidong, Tong Ling, Liu Qinghua, Fang Yuan, Sha Lirong, Liang Liang, Li Mengmeng, Du Yifei, Lin Lin, Wang Haiyan, Li Xiaohe, Li Zhijun. Finite element model establishment and stress analysis of lumbar-sacral intervertebral disc in ankylosing spondylitis [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 840-846. |
[11] | Zhang Min, Peng Jing, Zhang Qiang, Chen Dewang. Mechanical properties of L3/4 laminar decompression and intervertebral fusion in elderly osteoporosis patients analyzed by finite element method [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 847-851. |
[12] | Xue Xiaofeng, Wei Yongkang, Qiao Xiaohong, Du Yuyong, Niu Jianjun, Ren Lixin, Yang Huifeng, Zhang Zhimin, Guo Yuan, Chen Weiyi. Finite element analysis of osteoporosis in proximal femur after cannulated screw fixation for femoral neck fracture [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 862-867. |
[13] | Huang Peizhen, Dong Hang, Cai Qunbin, Lin Ziling, Huang Feng. Finite element analysis of anterograde and retrograde intramedullary nail for different areas of femoral shaft fractures [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 868-872. |
[14] | Wang Mingming, Zhang Zhong, Sun Jianhua, Zhao Gang, Song Hua, Yan Huadong, Lyu Bin. Finite element analysis of three different minimally invasive fixation methods for distal tibial fractures with soft tissue injury [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 879-885. |
[15] | Hou Zexin, Xu Benke, Dai Yuan, He Chuan, Zhang Chaoju, Li Xiaolin. Finite element analysis of the mechanism of dorsiflexion injury of wrist joint in elderly people after falls [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(6): 886-890. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||