Chinese Journal of Tissue Engineering Research ›› 2024, Vol. 28 ›› Issue (13): 1989-1995.doi: 10.12307/2024.120
Previous Articles Next Articles
Deng Guodong, Yang Jia, Liu Yang
Received:
2022-12-13
Accepted:
2023-03-13
Online:
2024-05-08
Published:
2023-08-28
Contact:
Liu Yang, MD, Professor, Department of Biology, School of Science, Shantou University, Guangdong Key Laboratory of Marine Biotechnology, Shantou 515063, Guangdong Province, China
About author:
Deng Guodong, Department of Biology, School of Science, Shantou University, Guangdong Key Laboratory of Marine Biotechnology, Shantou 515063, Guangdong Province, China
Supported by:
CLC Number:
Deng Guodong, Yang Jia, Liu Yang. Preparation and characterization of chitosan biguanide hydrochloride hydrogels loading mouse umbilical cord mesenchymal stem cells[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(13): 1989-1995.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
对1-1、1-2、1-3成胶状态进行观察,发现溶胶转变为不透明的胶状质地,都发生溶胶向凝胶的转变过程,虽已初步成胶,但流动性仍较强,其中1-2稳定性明显好于1-1、1-3。在1-2的基础上增加碳酸氢钠的量配制1-4在2 min时就已成胶,成胶后极其稳固,说明碳酸氢钠有增强体系稳定性的作用,碳酸氢钠量的增加使得pH值升高,壳聚糖析出,在37 ℃时壳聚糖链间部分片段发生物理结合形成凝胶。但考虑到1-4可能不易注射且碳酸氢钠含量过高产生的不良影响,将碳酸氢钠浓度降低为1%配制1-5,成胶时间为3.5 min,虽然成胶时间相比1-4有所延长,但对比1-1、1-2、1-3,成胶时间明显缩短,且成胶后稳定、可注射,因此将1-5命名为Gel-1。 (2)改性后凝胶配比优化:为了拓宽水凝胶适用性,将此筛选过程的pH值范围设定为7.0-7.2,再以成胶质量、缩短成胶时间为目的,进行下一步的优化,优化配比见表2。"
加入CGH后,对比表1结果,成胶状态好、成胶时间都明显缩短。直接对比成胶时间发现2-2的成胶时间最短,虽然其与2-3成胶时间一致,在节省原料的情况下,优先选择2-2。为了探究鱼胶原蛋白对成胶结果的影响,将2-2的配比去除鱼胶原蛋白配置2-5。将2-5命名为Gel-2;2-2命名为Gel-3。 2.1.2 水凝胶室温下的成胶状态 最终确定的3种水凝胶配比如表3所示,室温下溶胶状态的溶胶以及37 ℃下的Gel-1、Gel-2、Gel-3如图2所示。Gel-1的成胶时间是3.5 min,Gel-2、Gel-3的成胶时间分别为2.67,2.17 min,说明通过加入CGH,水凝胶的成胶时间明显缩短;对比Gel-2和Gel-3,也说明了鱼胶原蛋白对水凝胶体系内交联起到了重要作用。"
2.4 复合水凝胶体外降解性能分析 图6中Gel-1、Gel-2和Gel-3的体外降解曲线发现:各组水凝胶的降解率随着时间延长逐渐增加,Gel-1第1天降解率为(68.00±1.35)%,第15天降解率为(93.00±0.75)%;Gel-2第1天降解率比Gel-1更高,为(76.00±1.16)%,第15天降解率为(92.00±1.87)%;Gel-3第1天降解率为(54.00±0.52)%,第 15天降解率为(92.00±2.29)%。Gel-3在第1天的时候降解率最低,因有CGH和鱼胶原蛋白的存在,使凝胶内部交联结构更加稳定,降解速率相较Gel-1、Gel-2较慢,但从15 d的时间跨度总体上看,水凝胶在15 d时降解率都达到了90%以上,实验结果表明水凝胶具有良好的可降解性。"
[1] CATOIRA MC, FUSARO L, DI FRANCESCO D, et al. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med. 2019;30(10):115. [2] LI B, ZHANG L, WANG D, et al. Thermo-sensitive hydrogel on anodized titanium surface to regulate immune response. Surf Coat Tech. 2020;405:126624. [3] JI W, WU Q, HAN X, et al. Photosensitive hydrogels: from structure, mechanisms, design to bioapplications. Sci China Life Sci. 2020;63(12):1813-1828. [4] GAČANIN J, HEDRICH J, SIESTE S, et al. Autonomous Ultrafast Self-Healing Hydrogels by pH-Responsive Functional Nanofiber Gelators as Cell Matrices. Adv Mater. 2019;31(2):e1805044. [5] 高飞.磁场响应型纳米复合材料的合成及磁热生物学效应[D].西安:西北大学,2019. [6] CARAYON I, GAUBERT A, MOUSLI Y, et al. Electro-responsive hydrogels: macromolecular and supramolecular approaches in the biomedical field. Biomater Sci. 2020;8(20):5589-5600. [7] 耿志杰,于珊,曾志文,等.壳聚糖/海藻酸钠自修复水凝胶的制备与性能[J].暨南大学学报(自然科学与医学版),2022,43(3):322-331. [8] 吕宁宇,李冀,赵之栋,等.羟丁基壳聚糖联合生物矿化硅复合水凝胶修复小鼠皮肤创伤实验研究[J].解放军医学院学报,2022,43(5):563-569. [9] 吴爱军,朱敏,朱钰方.含铜硅酸钙纳米棒复合水凝胶用于肿瘤治疗和皮肤伤口愈合性能研究[J].无机材料科学报,2022,37(11):1203-1216. [10] 赵宁,汪伟,谢锐,等.金属有机骨架/聚乙烯醇双交联网络复合水凝胶的构建及其抗菌性能研究[J].现代化工,2022,42(4):116-122. [11] 徐群娜,杨羽西,闫文飞,等.抗菌黏附型酪蛋白基纳米复合水凝胶的制备[J].精细化工,2022,39(3):496-504. [12] WEI C, JIN X, WU C, et al. Injectable composite hydrogel based on carbon particles for photothermal therapy of bone tumor and bone regeneration. J Mater Sci Technol. 2022;23:64-72. [13] KHAN MUA, RAZAK SIA, HAIDER S, et al. Sodium alginate-f-GO composite hydrogels for tissue regeneration and antitumor applications. Int J Biol Macromol. 2022;208:475-485. [14] ZHANG W, XU L, ZHAO M, et al. Stretchable, self-healing and adhesive sodium alginate-based composite hydrogels as wearable strain sensors for expansion-contraction motion monitoring. Soft Matter. 2022;18(8):1644-1652. [15] 杨光,陈纪超,刘瑞雪,等.高拉伸自黏附导电P(AAS-VPA)/P(EA-MAA)复合水凝胶的传感应用[J].高分子材料科学与工程,2022,38(2):156-166. [16] XU H, DU Y, CHEN Y, et al. Electricity generation in simulated benthic microbial fuel cell with conductive polyaniline-polypyrole composite hydrogel anode. Renew Energ. 2022;183:242-250. [17] DAI M, ZHANG Y, ZHANG L, et al. Multipurpose Polysaccharide-based composite hydrogel with magnetic and thermoresponsive properties for phosphorus and enhanced copper (II) removal. Compos Part A Appl Sci Manuf. 2022;157:106916. [18] CHEN Z, PAN Y, CAI P. Sugarcane cellulose-based composite hydrogel enhanced by g-C3N4 nanosheet for selective removal of organic dyes from water. Int J Biol Macromol. 2022;205:37-48. [19] HAMEDI H, MORADI S, HUDSON SM, et al. Chitosan based bioadhesives for biomedical applications: A review. Carbohyd Polym. 2022;282:119100. [20] WANG Q, LI H, LEI Y, et al. Chitosan as an Adjuvant to Improve Isopyrazam Azoxystrobin against Leaf Spot Disease of Kiwifruit and Enhance Its Photosynthesis, Quality, and Amino Acids. Agriculture-Basel. 2022;12(3):373. [21] 李苑.壳聚糖双胍盐酸盐的制备及其对胰岛素抵抗HepG2细胞的影响[D].天津:天津大学,2016. [22] Li J, WANG M, QIAO Y, et al. Extraction and characterization of type I collagen from skin of tilapia (Oreochromis niloticus) and its potential application in biomedical scaffold material for tissue engineering. Process Biochem. 2018;74: 156-163. [23] NURILMALA M, SURYAMAREVITA H, HUSEIN HIZBULLAH H, et al. Fish skin as a biomaterial for halal collagen and gelatin. Saudi J Biol Sci. 2022;29(2):1100-1110. [24] EL OMAR R, BEROUD J, STOLTZ JF, et al. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Eng Part B Rev. 2014;20(5):523-544. [25] LIU Y, CHEN J, LIANG H, et al. Human umbilical cord-derived mesenchymal stem cells not only ameliorate blood glucose but also protect vascular endothelium from diabetic damage through a paracrine mechanism mediated by MAPK/ERK signaling. Stem Cell Res Ther. 2022;13(1):258. [26] MIRZA A, KHAN I, QAZI RE, et al. Role of Wnt/β-catenin pathway in cardiac lineage commitment of human umbilical cord mesenchymal stem cells by zebularine and 2’-deoxycytidine. Tissue Cell. 2022;77:101850. [27] WU K, LI J, CHAO W, et al. Immunomodulation via MyD88-NFκB Signaling Pathway from Human Umbilical Cord-Derived Mesenchymal Stem Cells in Acute Lung Injury. Int J Mol Sci. 2022;23(10):5295. [28] MA S, YIN J, HAO L, et al. Exosomes From Human Umbilical Cord Mesenchymal Stem Cells Treat Corneal Injury via Autophagy Activation. Front Bioeng Biotechnol. 2022;10:879192. [29] YIN Y, HAO H, CHENG Y, et al. Human umbilical cord-derived mesenchymal stem cells direct macrophage polarization to alleviate pancreatic islets dysfunction in type 2 diabetic mice. Cell Death Dis. 2018;9(7):760. [30] 刘司麒,吴明芮,乔铃然,等.负载人脐带间充质干细胞的水凝胶对糖尿病小鼠皮肤创面愈合的疗效[J].中国组织工程研究,2023,27(1): 21-27. [31] 张振坤. PDGF-BB/SA/Dex水凝胶负载BMSCs对小鼠全层皮肤切除伤口的修复作用与机制研究[D].郑州:郑州大学,2021. [32] 徐宁宁,谢琳琳,唐阳,等.壳聚糖双胍盐酸盐络合碘制备及抑菌性能[J].化工进展,2015,34(7):1979-1982. |
[1] | Qiu Xiaoyan, Li Bixin, Li Jingdi, Fan Chuiqin, Ma Lian, Wang Hongwu. Differentiation of insulin-producing cells from human umbilical cord mesenchymal stem cells infected by MAFA-PDX1 overexpressed lentivirus [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 1000-1006. |
[2] | Liu Qiwei, Zhang Junhui, Yang Yuan, Wang Jinjuan. Role and mechanism of umbilical cord mesenchymal stem cells on polycystic ovary syndrome [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(7): 1015-1020. |
[3] | Wang Wu, Fan Xiaolei, Xie Jie, Hu Yihe, Zeng Min. Hydroxyapatite-polyvinyl alcohol/collagen-chitosan-gelatin composite hydrogel for repairing rabbit osteochondral defect [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(5): 682-689. |
[4] | Gu Mingxi, Wang Changcheng, Tian Fengde, An Ning, Hao Ruihu, Guo Lin. Preparation and in vitro evaluation of a three-dimensional porous cartilage scaffold made of silk fibroin/gelatin/chitosan [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(3): 366-372. |
[5] | Yuan Yuanyuan, Pan Lu, Zhou Shaolan, Liang Yan, Xu Jianwei, Xu Wen. Effect of miR-26b on proliferation, migration and osteogenic differentiation of stem cells from human exfoliated deciduous teeth and human umbilical cord mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(13): 2017-2023. |
[6] | Zhang Wenhui, Pei Xiaohang, Kong Dai, Liu Zhongwen. Efficacy of umbilical cord mesenchymal stem cells replacing donor bone marrow cells in haploidentical hematopoietic stem cell transplantation [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(13): 2042-2046. |
[7] | Liu Zhong, Li Kewei, Wang Min, Liu Wenhui, Zhang Leilei, Guo Song, Qian Hui, Fu Qiang. Effects of micro-electric field on proliferation and osteogenic differentiation of human umbilical cord mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(13): 1983-1988. |
[8] | Deng Jing, Li Tinghua, Zhu Hai, Yang Xiao, Cao Jun, Zhu Xiangdong. Various arginine configurations-modified chitosan hydrogels promote skin wound repair [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(10): 1497-1504. |
[9] | Liu Chang, Zhang Wen, Zhu Can, Sun Jie, Ding Yicheng, Shi Qin. Inhibitory effect of bovine serum albumin-chitosan nanoparticles loaded with EPZ6438 on osteosarcoma [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(10): 1512-1518. |
[10] | Zheng Mingkui, Xue Chenhui, Guan Xiaoming, Ma Xun. Human umbilical cord mesenchymal stem cell-derived exosomes reduce the permeability of blood-spinal cord barrier after spinal cord injury [J]. Chinese Journal of Tissue Engineering Research, 2024, 28(1): 50-55. |
[11] | Cui Lianxu, Jiang Wenkang, Lu Dahong, Xu Junrong, Liu Xiaocui, Wang Bingyun. Clinical-grade human umbilical cord mesenchymal stem cells affect the improvement of neurological function in rats with traumatic brain injury [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(6): 835-839. |
[12] | Huang Qian, Hao Liying, He Longlong, Du Liangzhi. Graphene oxide-chitosan composite coating affects the biological behavior of osteoblasts [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(34): 5430-5435. |
[13] | Yuan Jialu, Liu Mei, Qin Xiaolong, Qiu Yang, Li Jing. Preparation and release property of norfloxacin sustained-release microspheres [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(30): 4790-4795. |
[14] | Jiu Jingwei, Liu Haifeng, Wang Guishan, Li Dijun, Yan Lei, Zhao Bin, Wang Bin. Functional characteristics of three-dimensional biological scaffolds for repairing injured spinal cord [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(30): 4876-4882. |
[15] | Li Rui, Liu Zhen, Guo Zige, Lu Ruijie, Wang Chen. Aspirin-loaded chitosan nanoparticles and polydopamine modified titanium sheets improve osteogenic differentiation [J]. Chinese Journal of Tissue Engineering Research, 2023, 27(3): 374-379. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||