中国组织工程研究 ›› 2026, Vol. 30 ›› Issue (1): 21-33.doi: 10.12307/2025.551

• 骨髓干细胞 bone marrow stem cells • 上一篇    下一篇

工程化干细胞仿生骨膜协调免疫炎症及血管化促进骨再生

孙慧雯,郭强强,王  伟,武  杰,郗  焜,顾  勇   

  1. 苏州大学附属第一医院,江苏省苏州市   215000
  • 收稿日期:2024-07-18 接受日期:2024-09-05 出版日期:2026-01-08 发布日期:2025-06-13
  • 通讯作者: 顾勇,博士,副主任医师,硕士生导师,苏州大学附属第一医院,江苏省苏州市 215000
  • 作者简介:孙慧雯,女,2002年生,苏州大学临床医学在读学士。 共同第一作者:郭强强,男,1998年生,苏州大学附属第一医院在读硕士,主要从事骨外科方面的研究。
  • 基金资助:
    国家自然科学基金项目(82072438,82272501);国家自然科学基金项目(82102589)

Engineered stem cell bionic periosteum coordinates immune inflammation and vascularization to promote bone regeneration

Sun Huiwen, Guo Qiangqiang, Wang Wei, Wu Jie, Xi Kun, Gu Yong   

  1. First Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
  • Received:2024-07-18 Accepted:2024-09-05 Online:2026-01-08 Published:2025-06-13
  • Contact: Gu Yong, MD, Associate chief physician, Master’s supervisor, First Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
  • About author:Sun Huiwen, First Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China Guo Qiangqiang, Master candidate, First Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China. Sun Huiwen and Guo Qiangqiang contributed equally to this article.
  • Supported by:
    National Natural Science Foundation of China, No. 82072438, 82272501 (to GY); National Natural Science Foundation of China, No. 82102589 (to XK)

摘要:

文题释义:

骨膜:是覆盖在骨组织表面的一层薄且坚韧的结缔组织膜,在骨的生长、修复以及提供营养方面起着重要作用。骨膜主要包括2层结构,外层富含胶原,能为骨组织提供支撑和机械保护;内层含有骨细胞,参与骨生成、修复和骨厚度的增加。
骨髓间充质干细胞:是一种存在于骨髓中的干细胞,具有自我更新和多向分化能力,经过不同的刺激能分化为骨细胞、软骨细胞、脂肪细胞、肌肉细胞等多种细胞类型,还在免疫调节、组织修复和再生医学中发挥重要作用。

摘要
背景:临床上主要应用自体骨、异体骨或人工骨促进骨缺损修复,然而不愈合率仍维持较高水平状态,关键是忽视了骨膜在骨愈合过程中的重要性。项目组前期通过构建负载血管内皮生长因子的静电纺丝膜在骨缺损处高度模拟天然骨膜的膜内成骨过程,一定程度上促进了骨再生。但是,损伤局部常面临巨噬细胞介导的剧烈炎症反应和种子细胞匮乏的窘境,导致递送生物因子面临失活或弥散的风险。因此,尚需进一步优化和协调仿生骨膜的免疫调控和成血管功能,促进骨修复。
目的:探讨干细胞工程化仿生骨膜的理化性质以及调控炎症微环境促进骨修复的作用。
方法:将左旋聚乳酸基微溶胶静电纺丝、Ⅰ型胶原蛋白自组装与凝胶干细胞移植技术结合,构建核层负载血管内皮生长因子、壳层递送骨髓间充质干细胞调控骨缺损免疫微环境的仿生骨膜(M@C-B)。通过扫描电镜、透射电镜、傅里叶红外光谱仪等检测骨膜的理化特性;通过仿生骨膜与巨噬细胞、骨髓间充质干细胞和人脐静脉内皮细胞建立共培养体系,探讨其免疫调控、体外成骨和成血管能力;最后,在大鼠股骨髁缺损模型中进一步验证干细胞工程化仿生骨膜的成骨性能。
结果与结论:①透射电镜观察显示微溶胶静电纺丝(MS)人工骨膜形成明显的核壳结构,扫描电镜观察显示负载血管内皮生长因子的微溶胶表面自组装Ⅰ型胶原蛋白(M@C)人工骨膜表面出现明显“蜘蛛网状”纤维结构沉积,红外光谱检测进一步表明Ⅰ型胶原蛋白自组装成功;释放实验证明M@C人工骨膜较MS人工骨膜缓解了突释现象的发生,维持内部血管内皮生长因子活性和长效释放;②活死荧光染色、CCK-8实验显示,骨髓间充质干细胞在MS人工骨膜、单纯定向左旋聚乳酸表面自组装Ⅰ型胶原蛋白(PLLA@C)人工骨膜以及M@C-B人工骨膜上良好增殖并存活,其中M@C-B组活细胞数目最多且增殖速率最高;③碱性磷酸酶染色、茜素红染色、骨桥蛋白免疫荧光染色显示,PLLA@C组和M@C-B组人工骨膜可显著促进骨髓间充质干细胞成骨分化;成血管实验显示,MS组、M@C-B组血管长度更长,血管样染色结构呈网状形态,交叉节点更多,其中M@C-B组更为明显;④免疫荧光和细胞流式显示,M@C-B组人工骨膜能显著抑制促炎巨噬细胞表型,促进巨噬细胞向抗炎M2表型方向极化;⑤体内研究进一步表明M@C-B组大鼠骨密度、骨小梁厚度、相对骨体积和骨小梁间隙皆优于其他组;⑥结果提示:构建的骨髓间充质干细胞工程化人工骨膜通过Ⅰ型胶原蛋白/骨髓间充质干细胞外相快速调控骨缺损免疫微环境与内相微溶胶静电纺丝核壳结构持续释放血管内皮生长因子,协同双向促进骨愈合。

关键词: 骨缺损修复, 仿生骨膜, 静电纺丝, 血管内皮生长因子, 骨髓间充质干细胞, 巨噬细胞, 工程化干细胞

Abstract: BACKGROUND: Autologous bone, allogeneic bone or artificial bone has been used to promote bone defect repair in the clinic, but the rate of non-healing is still high. The key is to ignore the importance of periosteum in the bone healing process. In the early stage of the project, the project team constructed an electrospinning membrane loaded with vascular endothelial growth factor to highly simulate the intramembranous osteogenesis of natural periosteum at the bone defect site, which promoted bone regeneration to a certain extent. However, the injured area often faces the dilemma of severe inflammatory response mediated by macrophages and lack of seed cells, resulting in the risk of inactivation or diffusion of delivered biological factors. Therefore, it is necessary to further optimize and coordinate the immune regulation and angiogenesis functions of biomimetic periosteum to promote bone repair. 
OBJECTIVE: To investigate the physicochemical properties of stem cell-engineered bionic periosteum and its role in regulating the inflammatory microenvironment to promote bone repair. 
METHODS: By combining L-polylactic acid-based microsol electrospinning, type I collagen self-assembly and gel stem cell transplantation technology, a bionic periosteum (M@C-B) was constructed, in which the core layer loaded with vascular endothelial growth factor and the shell layer delivered bone marrow mesenchymal stem cells to regulate the immune microenvironment of bone defects. The physicochemical properties of the periosteum were characterized by scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. A co-culture system was established between the bionic periosteum and macrophages, bone marrow mesenchymal stem cells and human umbilical vein endothelial cells to explore immune regulation and in vitro osteogenic and angiogenic abilities. Finally, the osteogenic properties of the stem cell engineered bionic periosteum were further verified in a rat femoral condyle defect model.
RESULTS AND CONCLUSION: (1) Transmission electron microscopy results showed that the micro-sol electrospinning (MS) formed a distinct core-shell structure. Scanning electron microscopy indicated that after the assembly of the collagen-I artificial periosteum (M@C) on the surface of the vascular endothelial growth factor-loaded micro-sol, a distinct “spider web-like” fibrous structure was deposited. Infrared spectroscopy further confirmed the successful self-assembly of collagen-I. Release experiments demonstrated that the M@C group mitigated the burst release phenomenon compared to the MS group, maintaining internal vascular endothelial growth factor activity and sustained release. (2) Live/dead cell staining and CCK-8 assay showed that bone marrow mesenchymal stem cells proliferated well and survived on three types of artificial periosteum: MS, purely aligned poly(L-lactic acid) (PLLA) surface self-assembled collagen-I artificial periosteum (PLLA@C), and vascular endothelial growth factor-loaded micro-sol fiber surface self-assembled collagen-I-bone marrow mesenchymal stem cells artificial periosteum (M@C-B). Among them, the M@C-B group had the highest number of live cells and the fastest proliferation rate. (3) Alkaline phosphatase staining, alizarin red staining, and osteopontin immunofluorescence staining showed that the PLLA@C and M@C-B groups significantly promoted osteogenic differentiation of bone marrow mesenchymal stem cells. Angiogenesis experiments demonstrated that the vascular endothelial growth factor-loaded groups (MS and M@C-B) had longer blood vessel lengths and more reticular vascular-like structures with more cross-linked nodes, with the M@C-B group being the most prominent. (4) Immunofluorescence and flow cytometry showed that artificial periosteum in the M@C-B group significantly inhibited the pro-inflammatory macrophage phenotype and promoted the polarization of macrophages towards the anti-inflammatory M2 phenotype. (5) In vivo studies further confirmed that the M@C-B group showed superior bone mineral density, trabecular thickness, relative bone volume, and trabecular spacing compared to other groups. (6) These results indicate that bone marrow mesenchymal stem cell-engineered artificial periosteum, through the rapid regulation of the bone defect immune microenvironment by the collagen-I-bone marrow mesenchymal stem cells outer phase and the sustained release of vascular endothelial growth factor by the micro-sol electrospinning core-shell structure of the inner phase, synergistically promotes bone healing.


Key words: bone defect repair, bionic periosteum, electrospinning, vascular endothelial growth factor, bone marrow mesenchymal stem cell, macrophage, engineered stem cell

中图分类号: