中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (36): 7880-7888.doi: 10.12307/2025.765
• 干细胞综述 stem cell review • 上一篇 下一篇
冉亚琴1,2,陈 曦2,谢晏讷2,袁 军1,2
收稿日期:
2024-09-21
接受日期:
2024-11-02
出版日期:
2025-12-28
发布日期:
2025-03-25
通讯作者:
袁军,博士,主任技师,贵州医科大学医学检验学院,贵州省贵阳市 550004;贵州医科大学附属金阳医院检验科,贵州省贵阳市 550081
作者简介:
冉亚琴,女,1997年生,贵州省铜仁市人,土家族,贵州医科大学在读硕士,规培医师,主要从事临床微生物及肿瘤免疫方面的研究。
基金资助:
Ran Yaqin1, 2, Chen Xi2, Xie Yanne2, Yuan Jun1, 2
Received:
2024-09-21
Accepted:
2024-11-02
Online:
2025-12-28
Published:
2025-03-25
Contact:
Yuan Jun, MD, Chief technician, School of Medical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou Province, China; Department of Laboratory Medicine, Jinyang Hospital Affiliated to Guizhou Medical University, Guiyang 550081, Guizhou Province, China
About author:
Ran Yaqin, Master candidate, Resident physician, School of Medical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou Province, China; Department of Laboratory Medicine, Jinyang Hospital Affiliated to Guizhou Medical University, Guiyang 550081, Guizhou Province, China
Supported by:
摘要:
文题释义:
细胞焦亡:是由Gasdermin家族蛋白介导的细胞死亡,是一种独特的程序性细胞死亡方式,细胞形态以细胞肿胀、质膜破裂、细胞核完整、膜孔形成、渗透裂解和炎性细胞内容物释放为特征。细胞焦亡与炎症反应紧密相连,并且依赖于炎症小体的激活以及caspase家族蛋白的剪切作用。中图分类号:
冉亚琴, 陈 曦, 谢晏讷, 袁 军. 细胞焦亡在乳腺癌治疗中的机制及潜在应用策略[J]. 中国组织工程研究, 2025, 29(36): 7880-7888.
Ran Yaqin, Chen Xi, Xie Yanne, Yuan Jun. Mechanism and potential application strategies of pyroptosis in breast cancer treatment[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(36): 7880-7888.
[1] SIEGEL RL, MILLER KD, WAGLE NS, et al. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48. [2] SIEGEL RL, GIAQUINTO AN, JEMAL A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12-49. [3] ARNOLD M, MORGAN E, RUMGAY H, et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast. 2022;66:15-23. [4] KATSURA C, OGUNMWONYI I, KANKAM HK, et al. Breast cancer: presentation, investigation and management. Br J Hosp Med (Lond). 2022;83(2):1-7. [5] HANAHAN D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1): 31-46. [6] LEI S, LI S, XIAO W, et al. Azurocidin 1 inhibits the aberrant proliferation of triple negative breast cancer through the regulation of pyroptosis. Oncol Rep. 2023;50(4):188. [7] ZHANG Z, YANG L, LEI X, et al. Mechanism of non-small cell lung cancer cell-derived exosome miR-196b-5p promoting pyroptosis of tumor T cells and tumor cell proliferation by downregulating ING5. J Biochem Mol Toxicol. 2024; 38(1):e23629. [8] WANG Y, ZOU Y, CHEN X, et al. Relevance of pyroptosis-associated genes in nasopharyngeal carcinoma diagnosis and subtype classification. J Gene Med. 2024;26(1):e3653. [9] WANG K, HAN S, LIU L, et al. Multi-Algorithm Analysis Reveals Pyroptosis-Linked Genes as Pancreatic Cancer Biomarkers. Cancers (Basel). 2024;16(2):372. [10] CHEN W, YE X, CHEN Y, et al. M6A methylation of FKFB3 reduced pyroptosis of gastric cancer by NLRP3. Anti-Cancer Drugs. 2024;35(4):344-357. [11] WU L, LU H, PAN Y, et al. The role of pyroptosis and its crosstalk with immune therapy in breast cancer. Front Immunol. 2022;13:973935. [12] ZITVOGEL L, KEPP O, GALLUZZI L, et al. Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol. 2012;13(4):343-351. [13] YU P, ZHANG X, LIU N, et al. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021;6(1):128. [14] FRIEDLANDER AM. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem. 1986;61(16):7123-7126. [15] ZYCHLINSKY A, PREVOST MC, SANSONETTI PJ. Shigella flexneri induces apoptosis in infected macrophages. Nature. 1992;358(6382):167-169. [16] BRENNAN MA, COOKSON BT. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol Microbiol. 2000;38(1):31-40. [17] ZHANG F, DENG Y, WANG D, et al. Construction and validation of a pyroptosis-related gene signature associated with the tumor microenvironment in uveal melanoma. Sci Rep. 2022;12:1640. [18] AGARD NJ, MALTBY D, WELLS JA. Inflammatory Stimuli Regulate Caspase Substrate Profiles. Mol Cell Proteomics. 2010;9(5):880-893. [19] BROZ P, RUBY T, BELHOCINE K, et al. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature. 2012;490(7419):288. [20] KAYAGAKI N, STOWE IB, LEE BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666-671. [21] SHI J, ZHAO Y, WANG K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660-665. [22] WANG Y, GAO W, SHI X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017;547(7661):99-103. [23] GALLUZZI L, VITALE I, AARONSON SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486-541. [24] NEWTON K, WICKLIFFE KE, MALTZMAN A, et al. Activity of caspase-8 determines plasticity between cell death pathways. Nature. 2019;575(7784):679-682. [25] ZHOU Z, HE H, WANG K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science. 2020;368(6494): eaaz7548. [26] ZHANG Z, ZHANG Y, XIA S, et al. Gasdermin E suppresses tumor growth by activating anti-tumor immunity. Nature. 2020;579(7799):415. [27] ZHU C, XU S, JIANG R, et al. The gasdermin family: emerging therapeutic targets in diseases. Signal Transduct Target Ther. 2024;9:87. [28] TAN Y, CHEN Q, LI X, et al. Pyroptosis: a new paradigm of cell death for fighting against cancer. J Exp Clin Cancer Res. 2021;40:153. [29] SHI J, GAO W, SHAO F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem Sci. 2017;42(4):245-254. [30] LIN W, LIN B, ZHOU Q, et al. Gasdermin-mediated pyroptosis confers anticancer immunity. J Immunother Cancer. 2024;12(1):e008162. [31] JOHNSON AG, WEIN T, MAYER ML, et al.Bacterial gasdermins reveal an ancient mechanism of cell death. Science. 2022;375(6577):221-225. [32] LAROCK DL, JOHNSON AF, WILDE S, et al. Group A Streptococcus induces GSDMA-dependent pyroptosis in keratinocytes. Nature. 2022;605(7910):527-531. [33] DENG W, BAI Y, DENG F, et al. Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature. 2022;602(7897):496-502. [34] ZHONG X, ZENG H, ZHOU Z, et al. Structural mechanisms for regulation of GSDMB pore-forming activity. Nature. 2023;616(7957):598-605. [35] MARTINON F, BURNS K, TSCHOPP J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417-426. [36] BURDETTE BE, ESPARZA AN, ZHU H, et al. Gasdermin D in pyroptosis. Acta Pharm Sin B. 2021;11(9):2768-2782. [37] RATHINAM VA, VANAJA SK, FITZGERALD KA. Regulation of inflammasome signaling. Nat Immunol. 2012;13(4):333-342. [38] XU J, NÚÑEZ G. The NLRP3 inflammasome: activation and regulation. Trends Biochem Sci. 2023;48(4):331-344. [39] ZHAO Y, YANG J, SHI J, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011;477(7366):596-600. [40] ZHANG Y, XU X, CHENG H, et al. AIM2 and Psoriasis. Front Immunol. 2023;14: 1085448. [41] SHARMA BR, KANNEGANTI TD. Inflammasome signaling in colorectal cancer. Transl Res. 2023;252:45-52. [42] JIN T, CURRY J, SMITH P, et al. Structure of the NLRP1 caspase recruitment domain suggests potential mechanisms for its association with procaspase-1. Proteins. 2013;81(7):1266-1270. [43] DUNCAN JA, CANNA SW. The NLRC4 Inflammasome. Immunol Rev. 2018;281(1): 115-123. [44] KOLB R, LIU GH, JANOWSKI AM, et al. Inflammasomes in cancer: a double-edged sword. Protein Cell. 2014;5(1):12-20. [45] WANG K, SUN Q, ZHONG X, et al. Structural Mechanism for GSDMD Targeting by Autoprocessed Caspases in Pyroptosis. Cell. 2020;180(5):941-955.e20. [46] WANG C, RUAN J. Mechanistic Insights into Gasdermin Pore Formation and Regulation in Pyroptosis. J Mol Biol. 2022;434(4):167297. [47] LI H, YANG T, ZHANG J, et al. Pyroptotic cell death: an emerging therapeutic opportunity for radiotherapy. Cell Death Discov. 2024;10(1):32. [48] SARHAN J, LIU BC, MUENDLEIN HI, et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci U S A. 2018;115(46):E10888-E10897. [49] WANG M, YU F, ZHANG Y, et al. Programmed cell death in tumor immunity: mechanistic insights and clinical implications. Front Immunol. 2024;14: 1309635. [50] HOU J, ZHAO R, XIA W, et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol. 2020;22(10):1264-1275. [51] LIU Y, FANG Y, CHEN X, et al. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome. Sci Immunol. 2020;5(43): eaax7969. [52] ZHANG Z, ZHANG Y, XIA S, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature. 2020;579(7799):415-420. [53] DE SCHUTTER E, ROELANDT R, RIQUET FB, et al. Punching Holes in Cellular Membranes: Biology and Evolution of Gasdermins. Trends Cell Biol. 2021;31(6): 500-513. [54] SARRIÓ D, MARTÍNEZ-VAL J, MOLINA-CRESPO Á, et al. The multifaceted roles of gasdermins in cancer biology and oncologic therapies. Biochim Biophys Acta Rev Cancer. 2021;1876(2):188635. [55] WANG M, CHEN X, ZHANG Y. Biological Functions of Gasdermins in Cancer: From Molecular Mechanisms to Therapeutic Potential. Front Cell Dev Biol. 2021; 9:638710. [56] SAEKI N, KUWAHARA Y, SASAKI H, et al. Gasdermin (Gsdm) localizing to mouse Chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells. Mamm Genome. 2000;11(9):718-724. [57] DING J, WANG K, LIU W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family correction appears. Nature. 2016;540(7631):150. [58] DENG W, BAI Y, DENG F, et al. Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature. 2022;608(7923):E28. [59] HERGUETA-REDONDO M, SARRIO D, MOLINA-CRESPO Á, et al. Gasdermin B expression predicts poor clinical outcome in HER2-positive breast cancer. Oncotarget. 2016;7(35):56295-56308. [60] MOLINA-CRESPO Á, CADETE A, SARRIO D, et al. Intracellular Delivery of an Antibody Targeting Gasdermin-B Reduces HER2 Breast Cancer Aggressiveness. Clin Cancer Res. 2019;25(15):4846-4858. [61] WEI J, XU Z, CHEN X, et al. Overexpression of GSDMC is a prognostic factor for predicting a poor outcome in lung adenocarcinoma. Mol Med Rep. 2020;21(1): 360-370. [62] CUI YQ, MENG F, ZHAN WL, et al. High Expression of GSDMC Is Associated with Poor Survival in Kidney Clear Cell Cancer. Biomed Res Int. 2021;2021:5282894. [63] SAEKI N, USUI T, AOYAGI K, et al. Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes Chromosomes Cancer. 2009;48(3):261-271. [64] XU D, JI Z, QIANG L. Molecular Characteristics, Clinical Implication, and Cancer Immunity Interactions of Pyroptosis-Related Genes in Breast Cancer. Front Med. 2021;8:702638. [65] HOU J, ZHAO R, XIA W, et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol. 2020;22(11):1396. [66] LIU Z, WANG C, YANG J, et al. Crystal Structures of the Full-Length Murine and Human Gasdermin D Reveal Mechanisms of Autoinhibition, Lipid Binding, and Oligomerization. Immunity. 2019;51(1):43-49.e4. [67] KAYAGAKI N, LEE BL, STOWE IB, et al. IRF2 transcriptionally induces GSDMD expression for pyroptosis. Sci Signal. 2019;12(582):eaax4917. [68] LIAO W, OVERMAN MJ, BOUTIN AT, et al. KRAS-IRF2 Axis Drives Immune Suppression and Immune Therapy Resistance in Colorectal Cancer. Cancer Cell. 2019;35(4):559-572.e7. [69] YAN H, LUO B, WU X, et al. Cisplatin Induces Pyroptosis via Activation of MEG3/NLRP3/caspase-1/GSDMD Pathway in Triple-Negative Breast Cancer. Int J Biol Sci. 2021;17(10):2606-2621. [70] IBRAHIM J, OP DE BEECK K, FRANSEN E, et al. Methylation analysis of Gasdermin E shows great promise as a biomarker for colorectal cancer. Cancer Med. 2019; 8(5):2133-2145. [71] YOKOMIZO K, HARADA Y, KIJIMA K, et al. Methylation of the DFNA5 gene is frequently detected in colorectal cancer. Anticancer Res. 2012;32(4):1319-1322. [72] XIA Y, JIN Y, CUI D, et al. Antitumor Effect of Simvastatin in Combination With DNA Methyltransferase Inhibitor on Gastric Cancer via GSDME-Mediated Pyroptosis. Front Pharmacol. 2022;13:860546. [73] FAN JX, DENG RH, WANG H, et al. Epigenetics-Based Tumor Cells Pyroptosis for Enhancing the Immunological Effect of Chemotherapeutic Nanocarriers. Nano Lett. 2019;19(11):8049-8058. [74] KIM MS, LEBRON C, NAGPAL JK, et al. Methylation of the DFNA5 increases risk of lymph node metastasis in human breast cancer.Biochem Biophys Res Commun. 2008;370(1):38-43. [75] CROES L, BEYENS M, FRANSEN E, et al. Large-scale analysis of DFNA5 methylation reveals its potential as biomarker for breast cancer.Clin Epigenetics. 2018;10:51. [76] FANG Y, TIAN S, PAN Y, et al. Pyroptosis: A new frontier in cancer. Biomed Pharmacother. 2020;121:109595. [77] KOREN E, FUCHS Y. Modes of Regulated Cell Death in Cancer. Cancer Discov. 2021;11(2):245-265. [78] ZUO YB, ZHANG YF, ZHANG R, et al. Ferroptosis in Cancer Progression: Role of Noncoding RNAs. Int J Biol Sci. 2022;18(5):1829-1843. [79] GONG W, FANG P, LENG M, et al. Promoting GSDME expression through DNA demethylation to increase chemosensitivity of breast cancer MCF-7 / Taxol cells. PLoS One. 2023;18(3):e0282244. [80] WANG YY, LIU XL, ZHAO R. Induction of Pyroptosis and Its Implications in Cancer Management. Front Oncol. 2019;9:971. [81] RUAN J, WANG S, WANG J. Mechanism and regulation of pyroptosis-mediated in cancer cell death. Chem Biol Interact. 2020;323:109052. [82] YAN H, LUO B, WU X, et al. Cisplatin Induces Pyroptosis via Activation of MEG3/NLRP3/caspase-1/GSDMD Pathway in Triple-Negative Breast Cancer. Int J Biol Sci. 2021;17(10):2606-2621. [83] ZHOU Z, HE H, WANG K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science. 2020;368(6494):eaaz7548. [84] WANG Q, WANG Y, DING J, et al. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature. 2020;579(7799):421-426. [85] FU C, JI W, CUI Q, et al. GSDME-mediated pyroptosis promotes anti-tumor immunity of neoadjuvant chemotherapy in breast cancer. Cancer Immunol Immunother. 2024;73(9):177. [86] ZHANG F, LIU Q, GANESAN K, et al. The Antitriple Negative Breast cancer Efficacy of Spatholobus suberectus Dunn on ROS-Induced Noncanonical Inflammasome Pyroptotic Pathway. Oxid Med Cell Longev. 2021;2021:5187569. [87] FU B, LOU Y, WU P, et al. Emerging role of necroptosis, pyroptosis, and ferroptosis in breast cancer: New dawn for overcoming therapy resistance. Neoplasia. 2024;55:101017. [88] WANG JG, JIAN WJ, LI Y, et al. Nobiletin promotes the pyroptosis of breast cancer via regulation of miR-200b/JAZF1 axis. Kaohsiung J Med Sci. 2021;37(7):572-582. [89] WANG Y, CHEN Y, JI DK, et al. Bio-orthogonal click chemistry strategy for PD-L1-targeted imaging and pyroptosis-mediated chemo-immunotherapy of triple-negative breast cancer. J Nanobiotechnology. 2024;22(1):461. [90] ZHAO P, WANG M, CHEN M, et al. Programming cell pyroptosis with biomimetic nanoparticles for solid tumor immunotherapy. Biomaterials. 2020;254:120142. [91] MO D,TANG X, MA Y, et al. tRNA-derived fragment 3’tRF-AlaAGC modulates cell chemoresistance and M2 macrophage polarization via binding to TRADD in breast cancer. J Transl Med. 2024;22(1):706. [92] LU L, ZHANG Y, TAN X, et al. Emerging mechanisms of pyroptosis and its therapeutic strategy in cancer. Cell Death Discov. 2022;8(1):338. [93] Zhang Z, Zhang H, Li D, et al. Caspase-3-mediated GSDME induced Pyroptosis in breast cancer cells through the ROS/JNK signalling pathway. J Cell Mol Med. 2021;25(17):8159-8168. [94] LI L, TIAN H, ZHANG Z, et al. Carrier-Free Nanoplatform via Evoking Pyroptosis and Immune Response against Breast Cancer. ACS Appl Mater Interfaces. 2023; 15(1):452-468. [95] NICKOLOFF JA, BOSS MK, ALLEN CP, et al. Translational research in radiation-induced DNA damage signaling and repair. Transl Cancer Res. 2017;6(Suppl 5): S875-S891. [96] LI L, LI Y, BAI Y. Role of GSDMB in Pyroptosis and Cancer. Cancer Manag Res. 2020;12:3033-3043. [97] LIU YG, CHEN JK, ZHANG ZT, et al. NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages. Cell Death Dis. 2017;8(2):e2579. [98] CAO W, CHEN G, WU L, et al. Ionizing Radiation Triggers the Antitumor Immunity by Inducing Gasdermin E-Mediated Pyroptosis in Tumor Cells. Int J Radiat Oncol Biol Phys. 2023;115(2):440-452. [99] WEI SC, DUFFY CR, ALLISON JP. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov. 2018;8(9):1069-1086. [100] ZHOU Z, YANG R, DONG J, et al. Pore forming-mediated intracellular protein delivery for enhanced cancer immunotherapy. Sci Adv. 2022; 8(46):eabq4659. [101] CHEN S, HENDERSON A, PETRIELLO MC, et al. Trimethylamine N-Oxide Binds and Activates PERK to Promote Metabolic Dysfunction. Cell Metab. 2019;30(6): 1141-1151.e5. [102] WU L, BAI S, HUANG J, et al. Nigericin Boosts Anti-Tumor Immune Response via Inducing Pyroptosis in Triple-Negative Breast Cancer. Cancers (Basel). 2023; 15(12):3221. [103] HEWALA TIM, EL-BENHAWY SA, ELWANY YN, et al. Effect of Radiotherapy on Activating the Pyroptotic Cell Death Pathway in Breast Cancer Patients: The Role of Serum GSDMD-CT, NLRP3 and IL-18. Asian Pac J Cancer Prev. 2024;25(2):447-452. [104] XIAO Y, ZHANG T, MA X, et al. Microenvironment-Responsive Prodrug-Induced Pyroptosis Boosts Cancer Immunotherapy. Adv Sci (Weinh). 2021;8(24):e2101840. [105] GAO W, WANG X, ZHOU Y, et al. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther. 2022;7(1): 196. [106] WAN P, HE X, HAN Y, et al. Stat5 inhibits NLRP3-mediated pyroptosis to enhance chemoresistance of breast cancer cells via promoting miR-182 transcription. Chem Biol Drug Des. 2023;102(1):14-25. [107] LIU X, MIAO M, SUN J, et al. PANoptosis: a potential new target for programmed cell death in breast cancer treatment and prognosis. Apoptosis. 2024;29(3-4): 277-288. [108] FAN JX, DENG RH, WANG H, et al. Epigenetics-Based Tumor Cells Pyroptosis for Enhancing the Immunological Effect of Chemotherapeutic Nanocarriers. Nano Lett. 2019;19(11):8049-8058. [109] ELION DL, JACOBSON ME, HICKS DJ, et al. Therapeutically Active RIG-I Agonist Induces Immunogenic Tumor Cell Killing in Breast Cancers. Cancer Res. 2018; 78(21):6183-6195. [110] LIANG MY, ZHANG MJ, QIU W, et al. Stepwise Size Shrinkage Cascade-Activated Supramolecular Prodrug Boosts Antitumor Immunity by Eliciting Pyroptosis. Adv Sci (Weinh). 2022;9(26):e2203353. [111] AN H, HEO JS, KIM P, et al. Tetraarsenic hexoxide enhances generation of mitochondrial ROS to promote pyroptosis by inducing the activation of caspase-3/GSDME in triple-negative breast cancer cells. Cell Death Dis. 2021;12(2):159. [112] PIZATO N, LUZETE BC, KIFFER LFMV, et al. Author Correction: Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Sci Rep. 2018;8(1):9775. [113] ZHENG Z, BIAN Y, ZHANG Y, et al. Metformin activates AMPK/SIRT1/NF-κB pathway and induces mitochondrial dysfunction to drive caspase3/GSDME-mediated cancer cell pyroptosis. Cell Cycle. 2020;19(10):1089-1104. [114] MA L, BIAN M, GAO H, et al. A novel 3-acyl isoquinolin-1(2H)-one induces G2 phase arrest, apoptosis and GSDME-dependent pyroptosis in breast cancer. PLoS One. 2022;17(5):e0268060. [115] TAN L, ZHANG H, DING Y, et al. CRTAC1 identified as a promising diagnosis and prognostic biomarker in lung adenocarcinoma. Sci Rep. 2024;14(1):11223. [116] JIANG X, ZHU Z, DING L, et al. ALKBH4 impedes 5-FU Sensitivity through suppressing GSDME induced pyroptosis in gastric cancer. Cell Death Dis. 2024; 15(6):435. [117] WANG C, ZHANG L, REN L, et al. A novel pyroptosis-related indicator of immune infiltration features and prognosis in breast cancer. Front Oncol. 2022;12:961500. [118] ZHOU Y, ZHENG J, BAI M, et al. Effect of Pyroptosis-Related Genes on the Prognosis of Breast Cancer. Front Oncol. 2022;12:948169. [119] WANG Z, BAO A, LIU S, et al. A Pyroptosis-Related Gene Signature Predicts Prognosis and Immune Microenvironment for Breast Cancer Based on Computational Biology Techniques. Front Genet. 2022;13:801056. [120] Sun Q, Fan G, Zhuo Q, et al. Pin1 promotes pancreatic cancer progression and metastasis by activation of NF-κB-IL-18 feedback loop. Cell Prolif. 2020; 53(5):e12816. [121] YANG X, WENG X, YANG Y, et al. Pyroptosis-Related lncRNAs Predict the Prognosis and Immune Response in Patients With Breast Cancer. Front Genet. 2022;12:792106. |
[1] | 张艺博, 卢健棋, 毛美玲, 庞 延, 董 礼, 杨尚冰, 肖 湘. 类风湿关节炎与冠状动脉粥样硬化的因果关系:GWAS数据库血清代谢物和炎症因子数据[J]. 中国组织工程研究, 2025, 29(在线): 1-9. |
[2] | 王秋月, 靳 攀, 蒲 锐. 运动干预与细胞焦亡在骨关节炎中的作用[J]. 中国组织工程研究, 2025, 29(8): 1667-1675. |
[3] | 万玲玲, 吴梦滢, 张宇骄, 罗青清. 炎性因子干扰素γ以焦亡途径影响人血管平滑肌细胞的迁移和凋亡[J]. 中国组织工程研究, 2025, 29(7): 1422-1428. |
[4] | 刘凌云, 何贵新, 秦伟彬, 宋 惠, 张利文, 唐伟智, 杨斐斐, 朱子一, 欧阳彬. 中药改善心肌损伤:线粒体钙稳态介导巨噬细胞自噬与焦亡的作用途径[J]. 中国组织工程研究, 2025, 29(6): 1276-1284. |
[5] | 何长良, 王 炎, 罗 玲, 刘 坚. 人脐带间充质干细胞抑制脓毒症小鼠肺组织细胞的焦亡[J]. 中国组织工程研究, 2025, 29(31): 6642-6648. |
[6] | 于庆贺, 蔡子鸣, 吴锦涛, 马鹏飞, 张 鑫, 周龙千, 王亚坤, 林晓钦, 林文平. 香草酸抑制终板软骨细胞炎症反应和细胞外基质降解[J]. 中国组织工程研究, 2025, 29(30): 6391-9397. |
[7] | 樊佳欣, 贾 祥, 徐田杰, 刘凯楠, 郭小玲, 张 辉, 王 茜. 二甲双胍抑制铁死亡改善骨关节炎模型大鼠的软骨损伤[J]. 中国组织工程研究, 2025, 29(30): 6398-6408. |
[8] | 周 颖, 田 勇, 钟芝梅, 古雍翔, 方 昊. 抑制TRAF6调节mTORC1/ULK1信号通路促进自噬改善脓毒症小鼠的心肌损伤[J]. 中国组织工程研究, 2025, 29(30): 6434-6440. |
[9] | 王万春, 易 军, 严张仁, 杨 悦, 董德刚, 李玉梅. 717解毒合剂重塑细胞外基质稳态促进蝮蛇伤大鼠局部损伤组织的修复[J]. 中国组织工程研究, 2025, 29(30): 6457-6465. |
[10] | 张 鑫, 郭宝娟, 徐慧鑫, 沈玉珍, 杨晓帆, 杨旭芳, 陈 培 . 丁苯酞对帕金森病细胞模型的保护作用及机制[J]. 中国组织工程研究, 2025, 29(30): 6466-6473. |
[11] | 张松江, 李龙洋, 周春光, 高剑峰. 茶多酚干预运动疲劳模型小鼠的中枢抗炎作用与机制[J]. 中国组织工程研究, 2025, 29(30): 6474-6481. |
[12] | 胡淑娟, 刘 当, 丁一庭, 刘 璇, 夏若寒, 汪献旺. 核桃油和花生油对动脉粥样硬化的改善作用[J]. 中国组织工程研究, 2025, 29(30): 6482-6488. |
[13] | 张 健, 蔡 峰, 李婷文, 任鹏博. 基于鱼群算法对运动者疲劳步态的动作识别[J]. 中国组织工程研究, 2025, 29(30): 6489-6498. |
[14] | 张子寒, 王加新, 杨文意, 朱 磊. 运动促进骨骼肌线粒体生物合成的调控机制[J]. 中国组织工程研究, 2025, 29(30): 6499-6508. |
[15] | 王建旭, 董恣豪, 黄子帅, 李思颖, 杨 光. 免疫微环境与骨衰老的相互作用及治疗策略[J]. 中国组织工程研究, 2025, 29(30): 6509-6519. |
1.1.6 手工检索 无。
1.1.7 检索策略 PubMed数据库检索策略,见图1。
1.1.8 检索文献量 初步检索共获得文献375篇。
1.3 数据的提取 共检索到375篇相关文献,根据纳入与排除标准排除254篇文献,实际纳入121篇文献进行综述。文献筛选流程见图2。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
文题释义:
细胞焦亡:是由Gasdermin家族蛋白介导的细胞死亡,是一种独特的程序性细胞死亡方式,细胞形态以细胞肿胀、质膜破裂、细胞核完整、膜孔形成、渗透裂解和炎性细胞内容物释放为特征。细胞焦亡与炎症反应紧密相连,并且依赖于炎症小体的激活以及caspase家族蛋白的剪切作用。
乳腺癌:是发生在乳腺上皮组织的恶性肿瘤,通常发生在乳腺的导管或小叶细胞中,其发病率与死亡率在女性癌症中均居首位,是女性最常见的癌症之一。
#br#
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
该文探讨细胞焦亡在乳腺癌治疗中的机制,揭示其作为一种独特的程序性细胞死亡方式在乳腺癌发生、发展中的关键作用,并分析其在化疗、放疗、靶向治疗和免疫治疗及潜在化合物中的应用潜力。研究特别强调细胞焦亡在克服乳腺癌耐药性、激活免疫系统以及作为预后生物标志物的重要价值,为乳腺癌的个体化治疗提供新思路。这些发现不仅增进我们对细胞焦亡在乳腺癌中作用的理解,而且为开发新的治疗策略提供科学依据,有望改善患者的治疗反应和生存期,对乳腺癌的临床治疗具有重要的指导意义。
#br#
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||