中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (29): 6317-6325.doi: 10.12307/2025.793

• 组织构建循证医学 evidence-based medicine in tissue construction • 上一篇    下一篇

基于机器学习脑卒中功能恢复及预后预测模型的系统评价

王嘉孺1,张  瑛2,杨  永1,祁  文2,肖华业2,马秋平1,杨连招1,罗自维1,何雅青2,张江银1,韦嘉雯1,孟  媛1,谭思连3   

  1. 1广西中医药大学,广西壮族自治区南宁市  530200;2广西中医药大学赛恩斯新医药学院,广西壮族自治区南宁市  530222;3广西壮族自治区妇幼保健院,广西壮族自治区南宁市  530021
  • 收稿日期:2024-08-10 接受日期:2024-11-05 出版日期:2025-10-18 发布日期:2025-03-08
  • 通讯作者: 杨永,博士,教授,硕士生导师,广西中医药大学,广西壮族自治区南宁市 530200
  • 作者简介:王嘉孺,女,1999年生,内蒙古自治区赤峰市人,蒙古族,在读硕士,主要从事老年护理学方面的研究。 共同第一作者:张瑛,硕士,副教授,高级实验师,主要从事老年护理、社区护理方面的研究。
  • 基金资助:
    2022 年度广西高校中青年教师科研基础能力提升项目( 自然科学类 )(2022KY1670),项目负责人:张瑛;2022 年广西中医药大学赛恩斯新医药学院校级科研项目 (2022MS012),项目负责人:张瑛;2024 年广西中医药大学赛恩斯新医药学院校大学生创新训练计划项目 (202413643028)(国家级),项目负责人:何雅青;2022 年广西中医药大学校级科研项目 (2022MS020),项目负责人:杨永;广西中医药大学高层次人才创新培育团队 (2022A010),项目负责人:马秋平;2020 年广西哲学社会科学规划研究课题 (20FGL024),项目负责人:杨连招;广西自然科学基金项目 (2013GXNSFDA278001),项目负责人:杨连招

Systematic review of machine learning models for predicting functional recovery and prognosis in stroke

Wang Jiaru1, Zhang Ying2, Yang Yong1, Qi Wen2, Xiao Huaye2, Ma Qiuping1, Yang Lianzhao1, Luo Ziwei1, He Yaqing2, Zhang Jiangyin1, #br# Wei Jiawen1, Meng Yuan1, Tan Silian3#br#   

  1. 1Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Zhuang Autonomous Region, China; 2Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning 530222, Guangxi Zhuang Autonomous Region, China; 3Guangxi Zhuang Autonomous Region Maternal and Child Health Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China 
  • Received:2024-08-10 Accepted:2024-11-05 Online:2025-10-18 Published:2025-03-08
  • Contact: Yang Yong, PhD, Professor, Master’s supervisor, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Zhuang Autonomous Region, China
  • About author:Wang Jiaru, Master candidate, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Zhuang Autonomous Region, China Zhang Ying, MS, Associate professor, Senior experimentalist, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning 530222, Guangxi Zhuang Autonomous Region, China Wang Jiaru and Zhang Ying contributed equally to this article.
  • Supported by:
    2022 Scientific Research Basic Ability Improvement Project of Guangxi University Young and Middle-aged Teachers (Natural Science), No. 2022KY1670 (to ZY); 2022 School-Level Scientific Research Project of Faculty of Chinese Medicine Science of Guangxi University of Chinese Medicine, No. 2022MS012 (to ZY); 2024 College Student Innovation Training Program Project of Faculty of Chinese Medicine Science of Guangxi University of Chinese Medicine, No. 202413643028 (National Level) (to HYQ) 2022 School-Level Scientific Research Project of Guangxi University of Chinese Medicine, No. 2022MS020 (to YY); High-level Talent Innovation Cultivation Team of Guangxi University of Chinese Medicine, No. 2022A010 (to MQP); 2020 Guangxi Philosophy and Social Sciences Planning Research Project, No. 20FGL024 (to YLZ); Guangxi Natural Science Foundation Project, No. 2013GXNSFDA278001 (to YLZ)

摘要:


文题释义:
机器学习:是人工智能的一个分支,旨在通过算法和统计模型使计算机能够自动学习和改进,而无需明确编程指令。机器学习广泛应用于医疗健康领域,尤其在预测、诊断和个性化治疗方面具有重要价值。
脑卒中:又称为中风,是由于大脑的血液供应中断或减少,导致脑组织缺氧和缺乏营养,最终引起脑细胞损伤或死亡的一种急性脑血管疾病。脑卒中主要分为两类:缺血性卒中和出血性卒中。

目的:如今机器学习算法逐渐被应用于预测脑卒中和心血管疾病方面。与传统回归模型相比,机器学习可以通过探索大量预测特征与结果变量之间的灵活关系,从数据中学习,以实现高预测准确性,为个体化治疗和康复方案的制定提供了新的方法。此文旨在系统评价基于机器学习脑卒中功能恢复及预后的预测模型,综合评估其预测性能及临床应用潜力,为相关预后预测模型的构建、应用及推广提供参考。
方法:按照PRISMA指南进行系统评价。通过检索PubMed、EMbase、Web of Science核心数据库、中国知网、万方和中国生物医学文献数据库,筛选出使用机器学习方法进行脑卒中预后预测的相关文献,检索时限为2014-01-01/2024-07-01。由2名研究人员严格按照纳入与排除标准独立筛选文献、提取数据,使用预测模型偏倚风险评价工具评价模型质量。
结果:①初步检索共获取3 126篇文献,经过筛选和排除,最终纳入18篇研究,共运用13种机器学习方法构建了150个预测模型,其中应用次数最多的3种方法为逻辑回归、随机森林和极限梯度提升(XGBoost);仅有1项研究开展了外部验证;有8项研究报告了缺失数据的处理方法;②结局指标方面有8项研究采用了临床数据与影像学数据结合来构建模型,9项研究仅运用临床数据构建模型,1项研究仅用影像学数据构建模型;③18项研究均给出了研究中最重要的特征,其中被提及最多的是美国国立卫生研究院卒中量表和年龄;所有研究均报告了曲线下面积值,范围0.74-0.96,最高为0.96;所有模型的总体偏倚风险均为高偏倚风险,模型分析领域高偏倚风险是导致所有模型总体偏倚风险高的主要原因;④Meta分析结果显示年龄和美国国立卫生研究院卒中量表评分对脑卒中预后影响显著,年龄[MD=8.49,95%CI(6.24,10.75),P < 0.01],美国国立卫生研究院卒中量表评分[MD=4.78,95%CI(2.56,7.00),P < 0.01]。
结论:此次研究系统评价了基于机器学习的脑卒中功能恢复及预后预测模型,模型均具有良好的预测潜力。但未来研究应增加纳入模型样本量,采用前瞻性研究,并且添加对模型的外部验证以提高模型的稳定性和预测准确性,控制偏倚风险,以帮助模型在实际临床应用中的验证和推广,同时应对缺失值的插补更透明和精准。虽然现有的机器学习模型显示出良好的预测性能,但也要注重模型的功能性和可用性,纳入特征多会降低易用性。应开发简便易用的模型接口和用户友好的临床工具,使医护人员能够更好地应用模型进行临床决策。
https://orcid.org/0000-0002-4717-7829(王嘉孺)

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

关键词: 机器学习, 脑卒中, 预后预测, 功能恢复, 系统评价

Abstract: OBJECTIVE: Nowadays, machine learning algorithms are gradually being applied to predict stroke and cardiovascular disease. Compared with traditional regression models, machine learning can learn from data to achieve high prediction accuracy by exploring the flexible relationship between a large number of predictive features and outcome variables, providing a new method for the formulation of individualized treatment and rehabilitation programs. This study aims to systematically evaluate stroke functional recovery and prognosis prediction models based on machine learning, comprehensively assessing their predictive performance and clinical application potential to provide references for the development, application, and promotion of related predictive models. 
METHODS: This review was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Relevant literature on stroke prognosis prediction using machine learning methods was selected by searching PubMed, EMbase, Web of Science Core Collection, CNKI, WanFang, and the China Biomedical Literature Database, with the search period from January 1, 2014, to July 1, 2024. Two researchers independently screened the literature and extracted data based on inclusion and exclusion criteria, using the Prediction model Risk Of Bias ASsessment Tool (PROBAST) to assess model quality. 
RESULTS: (1) A total of 3 126 articles were obtained in the preliminary search. After screening and exclusion, 18 articles were finally included. 150 prediction models were constructed using 13 machine learning methods. The three most frequently used methods are Logistic Regression, Random Forest, and Extreme Gradient Boosting (XGBoost). Only one study was externally validated. Eight studies reported how the missing data were handled. (2) In terms of outcome indicators, 8 studies used the combination of clinical data and imaging data to build models, 9 studies only used clinical data to build models, and 1 study only used imaging data to build models. (3) Each of the 18 studies gave the most important characteristics of the study, with the most mentioned being the National Institute of Health Stroke Scale and age. All studies reported area under curve values ranging from 0.74 to 0.96, with the highest area under curve being 0.96. The overall risk of bias in all models was high. The high risk of bias in the field of model analysis was the main reason for the high risk of overall bias in all models. (4) The results of meta-analysis showed that age and National Institute of Health Stroke Scale score had significant influence on stroke prognosis, with age [MD=8.49, 95%CI(6.24, 10.75), P < 0.01] and National Institute of Health Stroke Scale score [MD=4.78, 95%CI(2.56, 7.00), P < 0.01].  
CONCLUSION: This study systematically evaluated the predictive model of functional recovery and prognosis of stroke based on machine learning, and all the models have good predictive potential. However, future studies should increase the sample size of the included model, adopt prospective studies, and add external validation of the model to improve the stability and prediction accuracy of the model, control the risk of bias, and contribute to the validation and promotion of the model in practical clinical applications. At the same time, the interpolation of missing values is more transparent and accurate. Although existing machine learning models show good predictive performance, it is also important to focus on the functionality and usability of the model, and the inclusion of features will reduce ease of use. We should develop easy to use model interfaces and user-friendly clinical tools to enable medical staff to better apply the model for clinical decision. 

Key words: machine learning, stroke, prognosis prediction, functional recovery, systematic review

中图分类号: