中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (14): 2979-2988.doi: 10.12307/2025.396

• 组织构建与生物力学 tissue construction and biomechanics • 上一篇    下一篇

高压氧可消除高强度间歇冲击微周期训练中的运动性疲劳

裴云祥,吴  昊   

  1. 首都体育学院,北京市  100191
  • 收稿日期:2024-04-20 接受日期:2024-06-13 出版日期:2025-05-18 发布日期:2024-09-28
  • 通讯作者: 吴昊,博士,教授,首都体育学院,北京市 100191
  • 作者简介:裴云祥,男,1990年生,山东省济南市人,汉族,首都体育学院在读博士,讲师,主要从事机能恢复方面的研究。
  • 基金资助:
    国家重点研发计划“科技冬奥”重点专项(2018YFF0300603,2018YFF0300902),项目负责人:吴昊

Hyperbaric oxygen intervention eliminates exercise-induced fatigue in a high-intensity interval training shock microcycle

Pei Yunxiang, Wu Hao   

  1. Capital University of Physical Education and Sports, Beijing 100191, China
  • Received:2024-04-20 Accepted:2024-06-13 Online:2025-05-18 Published:2024-09-28
  • Contact: Wu Hao, PhD, Professor, Capital University of Physical Education and Sports, Beijing 100191, China
  • About author:Pei Yunxiang, PhD candidate, Lecturer, Capital University of Physical Education and Sports, Capital University of Physical Education and Sports, Beijing 100191, China
  • Supported by:
    National Key Research and Development Program “Science and Technology for Olympic Winter Games,” Nos. 2018YFF0300603 and 2018YFF0300902 (to WH)

摘要:


文题释义:
高强度间歇冲击微周期训练:是指通过短期内的高强度间歇训练快速提高耐力表现。此训练模式采用高强度间歇训练的原则,即在短时间内交替进行高强度运动和恢复期。这种训练方法通常包括一系列高强度的周期性训练,持续时间通常为几秒到几分钟,紧随其后是恢复期,以便身体得以恢复和准备进行下一轮高强度训练。
高压氧疗法:是指在大于一个大气压的压力下呼吸纯氧或高浓度氧气,通过调节人体的氧含量,进而对器官起到保护作用的治疗方法,已被证明具有良好的抗疲劳作用。

背景:高压氧作为新兴的疲劳消除手段之一,在体育领域中得到越来越多的重视和应用。高压氧干预对高强度间歇冲击微周期训练疲劳消除的研究较少。
目的:探究高压氧干预对高强度间歇冲击微周期训练运动性疲劳消除效果的影响,并从血液生化指标和代谢组学方面进行相应机制研究。
方法:在首都体育学院招募20名男性大学生,随机分为对照组(n=10)和高压氧组(n=10),均进行高强度间歇冲击微周期训练,为期2周,共12次,具体训练方案为先以50% HRmax的强度热身10 min,再以90%-95% HRmax强度蹬车4 min,重复5组,组间休息2.5 min,最后再进行50% HRmax强度蹬车30 min。对照组受试者训练后自然恢复,高压氧组受试者训练后进行高压氧恢复,每次干预60 min,压力为131.722 kPa。在试验前、试验中期、试验后1 d和试验后3 d采集血液分析生化指标及代谢组学指标,并进行主观感觉疲劳量表评分,其中氧化应激指标与疲劳监控指标进行Pearson相关性分析。
结果与结论:①运动性疲劳指标变化:与训练前相比,对照组训练后血尿酸、肌酸激酶、白细胞介素6和主观感觉疲劳量表评分均有不同程度的上调,而高压氧组在高压氧干预后血尿酸、肌酸激酶、白细胞介素6和主观感觉疲劳量表评分变化不大;组间相比,对照组试验后1 d血尿酸、肌酸激酶和白细胞介素6水平显著高于高压氧组;②氧化应激指标变化:与训练前相比,对照组训练后超氧化物歧化酶活性降低、丙二醛水平升高,而高压氧组在高压氧干预后超氧化物歧化酶活性升高、丙二醛水平降低;③超氧化物歧化酶与血尿酸、白细胞介素6和主观感觉疲劳量表评分呈负相关;丙二醛与白细胞介素6和主观感觉疲劳量表评分呈正相关;④代谢组学指标变化:显著变化的代谢通路是花生四烯酸代谢和氧化磷酸化代谢,富集通路上差异代谢物质有花生四烯酸、前列腺素 D2、白三烯 D4等。结果表明,高强度间歇冲击微周期训练导致机体发生氧化应激,促进了运动性疲劳的产生;高压氧可以一定程度改善氧化应激水平,以及引起花生四烯酸代谢和氧化磷酸化代谢,从而减少氧化损伤,调节炎症反应,促进组织修复和运动性疲劳消除。

关键词: 高压氧, 高强度间歇冲击微周期, 运动性疲劳, 氧化应激, 代谢组学

Abstract: BACKGROUND: Hyperbaric oxygen, as one of the emerging means of fatigue elimination, has been increasingly valued and applied in the field of sports. However, there are fewer studies on the effect of hyperbaric oxygen intervention on fatigue elimination after high-intensity interval training shock microcycle.
OBJECTIVE: To investigate the effect of hyperbaric oxygen intervention on the elimination of exercise-induced fatigue in the high-intensity interval training shock microcycle, and to study the corresponding mechanisms in terms of blood biochemical markers and metabolomics.
METHODS: Twenty male college students were recruited from the Capital University of Physical Education and Sports, and randomly divided into a control group (n=10) and a hyperbaric oxygen group (n=10). Both groups underwent high-intensity interval training shock microcycle training for 2 weeks, a total of 12 sessions, with the following specific training program: warming up at 50% of the maximum heart rate for 10 minutes, and then pedaling at 90%-95% of the maximum heart rate for 4 minutes, repeating the program for 5 sessions, with a rest period of 2.5 minutes in between sessions, and finally pedaling at 50% of the maximum heart rate for 30 minutes. Subjects in the control groups recovered naturally after training, and those in the hyperbaric group recovered from training with hyperbaric oxygen, 60 minutes each, at a pressure of 131.722 kPa. Blood biochemical markers and metabolomics data were analyzed and rating of perceived exertion was performed before, during and at 1 and 3 days after the experiment. Oxidative stress indicators and fatigue monitoring indicators were analyzed by Pearson correlation analysis. 
RESULTS AND CONCLUSION: (1) Regarding exercise-induced fatigue indicators, the control group showed varying degrees of increase in blood uric acid, creatine kinase, interleukin 6 and the rating of perceived exertion after training, while the hyperbaric oxygen group exhibited minimal changes in blood uric acid, creatine kinase, interleukin 6 and the rating of perceived exertion after training. Additionally, blood uric acid, creatine kinase, and interleukin 6 levels in the control group were significantly higher than those in the hyperbaric oxygen group at 1 day after training. (2) In the control group, superoxide dismutase levels decreased, while malondialdehyde levels increased after training. Conversely, in the hyperbaric oxygen group, superoxide dismutase levels increased, while malondialdehyde levels decreased after training. (3) Superoxide dismutase levels showed a negative correlation with blood uric acid, interleukin 6 and the rating of perceived exertion, while malondialdehyde levels exhibited a positive correlation with interleukin 6 and the rating of perceived exertion. (4) In the metabolomics analysis, significant changes were observed in the metabolic pathways of arachidonic acid metabolism and oxidative phosphorylation. Differential metabolites enriched in these pathways included arachidonic acid, prostaglandin D2, leukotriene D4, etc. To conclude, the high-intensity interval training shock microcycle induces oxidative stress, leading to exercise-induced fatigue in the body. Hyperbaric oxygen intervention can partially ameliorate oxidative stress levels and cause arachidonic acid metabolism and oxidative phosphorylation, thereby reducing oxidative damage, regulating inflammatory responses, promoting tissue repair, and alleviating exercise-induced fatigue.

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

Key words: hyperbaric oxygen, high-intensity interval training shock microcycle, exercise-induced fatigue, oxidative stress, metabolomics

中图分类号: