[1] YUAN Q, BAO B, LI M, et al. Bioactive Conjugated Polymer-Based Biodegradable 3D Bionic Scaffolds for Facilitating Bone Defect Repair. Adv Healthc Mater. 2023:e2302818. doi: 10.1002/adhm.202302818.  
[2]	LI WW, WU YT, ZHANG X, et al. Self-healing hydrogels for bone defect repair. RSC Adv. 2023;13:16773-16788. 
[3]	MANCUSO E, SHAH L, JINDAL S, et al. Additively manufactured BaTiO3 composite scaffolds: A novel strategy for load bearing bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2021;126:112192. 
[4]	POH PS, LINGNER T, KALKHOF S, et al. Enabling technologies towards personalization of scaffolds for large bone defect regeneration. Curr Opin Biotechnol. 2022;74:263-270.  
[5]	SHIBLI JA, NAGAY BE, SUÁREZ LJ, et al. Bone Tissue Engineering Using Osteogenic Cells: From the Bench to the Clinical Application. Tissue Eng Part C Methods. 2022;28(5):179-192.  
[6]	FENG Y, ZHU S, MEI D, et al. Application of 3D Printing Technology in Bone Tissue Engineering: A Review. Curr Drug Deliv. 2021;18(7):              847-861.  
[7]	ZHANG L, YANG G, JOHNson BN, et al. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2019; 84:16-33.  
[8]	KHALAF AT, WEI Y, WAN J, et al. Bone Tissue Engineering through 3D Bioprinting of Bioceramic Scaffolds: A Review and Update. Life (Basel). 2022;12(6):903.  
[9]	BISHT B, HOPE A, MUKHERJEE A, et al. Advances in the Fabrication of Scaffold and 3D Printing of Biomimetic Bone Graft. Ann Biomed Eng. 2021;49(4):1128-1150.  
[10]	PESARANHAJIABBAS E, MISRA M, MOHANTY AK. Recent progress on biodegradable polylactic acid based blends and their biocomposites: A comprehensive review. Int J Biol Macromol. 2023;253(Pt 1):126231. 
[11]	BAPTISTA R, GUEDES M. Morphological and mechanical characterization of 3D printed PLA scaffolds with controlled porosity for trabecular bone tissue replacement. Mater Sci Eng C Mater Biol Appl. 2021;118: 111528. 
[12]	WANG Q, QIAO Y, CHENG M, et al. Tantalum implanted entangled porous titanium promotes surface osseointegration and bone ingrowth. Sci Rep. 2016; 6:26248.  
[13]	HWANG C, PARK S, KANG IG, et al. Tantalum-coated polylactic acid fibrous membranes for guided bone regeneration. Mater Sci Eng C Mater Biol Appl. 2020;115:111112.  
[14]	CUI J, ZHANG S, HUANG M, et al. Micro-nano porous structured tantalum-coated dental implants promote osteogenic activity in vitro and enhance osseointegration in vivo. J Biomed Mater Res A. 2023; 111(9):1358-1371.  
[15]	ZHANG C, ZHOU Z, LIU N, et al. Osteogenic differentiation of 3D-printed porous tantalum with nano-topographic modification for repairing craniofacial bone defects. Front Bioeng Biotechnol. 2023;11:1258030.  
[16]	HU G, ZHU Y, XU F, et al. Comparison of surface properties, cell behaviors, bone regeneration and osseointegration between nano tantalum/PEEK composite and nano silicon nitride/PEEK composite. J Biomater Sci Polym Ed. 2022;33(1):35-56.  
[17]	EL YAKHLIFI S, BALL V. Polydopamine as a stable and functional nanomaterial. Colloids Surf B Biointerfaces. 2020;186:110719.  
[18]	ZHANG C, OU Y, LEI WX, et al. CuSO4/H2O2-Induced Rapid Deposition of Polydopamine Coatings with High Uniformity and Enhanced Stability. Angew Chem Int Ed Engl. 2016;55(9):3054-3057.  
[19]	TANG P, HAN L, LI P, et al. Mussel-Inspired Electroactive and Antioxidative Scaffolds with Incorporation of Polydopamine-Reduced Graphene Oxide for Enhancing Skin Wound Healing. ACS Appl Mater Interfaces. 2019;11(8):7703-7714. 
[20]	XIE X, TANG J, XING Y, et al. Intervention of Polydopamine Assembly and Adhesion on Nanoscale Interfaces: State-of-the-Art Designs and Biomedical Applications. Adv Healthc Mater. 2021;10(9):e2002138.  
[21]	LIU Y, HAN Y, DONG H, et al. Ca2+-Mediated Surface Polydopamine Engineering to Program Dendritic Cell Maturation. ACS Appl Mater Interfaces. 2020;12(3):4163-4173.  
[22]	YAZDI MK, ZARE M, KHODADADI A, et al. Polydopamine Biomaterials for Skin Regeneration. ACS Biomater Sci Eng. 2022;8(6):2196-2219.  
[23]	WEI H, CUI J, LIN K, et al. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res. 2022; 10(1):17.  
[24]	POSKUS MD, WANG T, DENG Y, et al. Fabrication of 3D-printed molds for polydimethylsiloxane-based microfluidic devices using a liquid crystal display-based vat photopolymerization process: printing quality, drug response and 3D invasion cell culture assays. Microsyst Nanoeng. 2023;9:140.  
[25]	OKORUWA L, SAMENI F, BORISOV P, et al. 3D Printing Soft Magnet: Binder Study for Vat Photopolymerization of Ferrosilicon Magnetic Composites. Polymers (Basel). 2023;15(16):3482.  
[26]	ZHAO Y, ZHONG J, WANG Y, et al. Photocurable and elastic polyurethane based on polyether glycol with adjustable hardness for 3D printing customized flatfoot orthosis. Biomater Sci. 2023;11(5):1692-1703.  
[27]	MADŽAREVIĆ M, IBRIĆ S. Evaluation of exposure time and visible light irradiation in LCD 3D printing of ibuprofen extended release tablets. Eur J Pharm Sci. 2021;158:105688.  
[28]	ALFIERI ML, WEIL T, NG DYW, et al. Polydopamine at biological interfaces. Adv Colloid Interface Sci. 2022;305:102689.  
[29]	严格,乔鞾华,曹红,等.聚多巴胺的表面修饰功能在组织工程的应用进展[J].中国生物工程杂志,2020,40(12):75-81. 
[30]	DENG Z, WANG W, XU X, et al. Biofunction of Polydopamine Coating in Stem Cell Culture. ACS Appl Mater Interfaces. 2021;13:10748-10759. 
[31]	刘宗光,屈树新,翁杰.聚多巴胺在生物材料表面改性中的应用[J].化学进展,2015,27(2):212-219. 
[32]	YE X, LI L, LIN Z, et al. Integrating 3D-printed PHBV/Calcium sulfate hemihydrate scaffold and chitosan hydrogel for enhanced osteogenic property. Carbohydr Polym. 2018;202:106-114. 
[33]	QI J, WANG Y, CHEN L, et al. 3D-printed porous functional composite scaffolds with polydopamine decoration for bone regeneration. Regen Biomater. 2023;10:rbad062.  doi: 10.1093/rb/rbad062.  
[34]	GUO Y, XIE K, JIANG W, et al. In Vitro and in Vivo Study of 3D-Printed Porous Tantalum Scaffolds for Repairing Bone Defects. ACS Biomater Sci Eng. 2019;5(2):1123-1133.  
[35]	LU MM, WU PS, GUO XJ, et al. Osteoinductive effects of tantalum and titanium on bone mesenchymal stromal cells and bone formation in ovariectomized rats. Eur Rev Med Pharmacol Sci. 2018;22(21):                7087-7104.  
[36]	XUE Y, ZHU Z, ZHANG X, et al. Accelerated Bone Regeneration by MOF Modified Multifunctional Membranes through Enhancement of Osteogenic and Angiogenic Performance. Adv Healthc Mater. 2021;10(6):e2001369. 
[37]	YIN W, LIU S, DONG M, et al. A New NLRP3 Inflammasome Inhibitor, Dioscin, Promotes Osteogenesis. Small. 2020;16(1):e1905977. 
[38]	ZHOU L, WANG J, MU W. BMP-2 promotes fracture healing by facilitating osteoblast differentiation and bone defect osteogenesis. Am J Transl Res. 2023;15(12):6751-6759. 
[39]	ZENG L, HE H, SUN M, et al. Runx2 and Nell-1 in dental follicle progenitor cells regulate bone remodeling and tooth eruption. Stem Cell Res Ther. 2022;13:486. 
[40]	CLAEYS L, STORONI S, EEKHOFF M, et al. Collagen transport and related pathways in Osteogenesis Imperfecta. Hum Genet. 2021;140(8):              1121-1141. 
[41]	QIAN H, LEI T, YE Z, et al. From the Performance to the Essence: The Biological Mechanisms of How Tantalum Contributes to Osteogenesis. Biomed Res Int. 2020;2020:5162524.  
[42]	ZHU H, JI X, GUAN H, et al. Tantalum nanoparticles reinforced polyetheretherketone shows enhanced bone formation. Mater Sci Eng C Mater Biol Appl. 2019;101:232-242. |