中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (2): 409-418.doi: 10.12307/2025.234

• 组织构建综述 tissue construction review • 上一篇    下一篇

基于机器学习的运动损伤预警模型

魏梦力1,2,钟亚平1,2,桂辉贤1,周易文1,关烨明1,余绍华1   

  1. 1武汉体育学院体育大数据研究中心,湖北省武汉市  430079;2湖北省运动与健康创新发展研究中心,湖北省武汉市  430079


  • 收稿日期:2024-01-15 接受日期:2024-02-19 出版日期:2025-01-18 发布日期:2024-05-25
  • 通讯作者: 钟亚平,博士,教授,博士生导师,武汉体育学院体育大数据研究中心,湖北省武汉市 430079;湖北省运动与健康创新发展研究中心,湖北省武汉市 430079
  • 作者简介:魏梦力,男,1995年生,湖北省襄阳市人,汉族,武汉体育学院在读博士,主要从事运动控制理论与实践相关研究。
  • 基金资助:
    国家社科基金后期资助重点项目(22FTYA001);国家体育总局决策咨询研究项目(2023-B-19);湖北省高等学校省级教学研究项目(2022395)

Sports injury prediction model based on machine learning

Wei Mengli1, 2, Zhong Yaping1, 2, Gui Huixian1, Zhou Yiwen1, Guan Yeming1, Yu Shaohua1    

  1. 1Sports Big Data Research Center of Wuhan Sports University, Wuhan 430079, Hubei Province, China; 2Hubei Sports and Health Innovation and Development Research Center, Wuhan 430079, Hubei Province, China
  • Received:2024-01-15 Accepted:2024-02-19 Online:2025-01-18 Published:2024-05-25
  • Contact: Zhong Yaping, PhD, Professor, Doctoral supervisor, Sports Big Data Research Center of Wuhan Sports University, Wuhan 430079, Hubei Province, China; Hubei Sports and Health Innovation and Development Research Center, Wuhan 430079, Hubei Province, China
  • About author:Wei Mengli, PhD candidate, Sports Big Data Research Center of Wuhan Sports University, Wuhan 430079, Hubei Province, China; Hubei Sports and Health Innovation and Development Research Center, Wuhan 430079, Hubei Province, China
  • Supported by:
    Later-stage Key Project of the National Social Science Foundation, No. 22FTYA001; Decision-Making Consultation Research Project of General Administration of Sport of China, No. 2023-B-19; Hubei Provincial Education Reform Project, No. 2022395

摘要:

文题释义:
机器学习:是实现人工智能的核心技术,即让计算机模拟人类学习行为,从而获得人类智能,进而升级为智能体,从而替代人类思维决策的方法。
运动损伤预警:通过跟踪与运动损伤风险密切相关的信息或数据,进而预测运动损伤风险的工作过程。

背景:运动医学界广泛呼吁采用机器学习技术高效处理庞大、冗杂的运动数据资源,构建智能化的运动损伤预警模型,以实现运动损伤的精准预警。对此类研究成果进行综合归纳与评述,对把握预警模型改进方向,指导中国损伤预警模型构建工作均具有重要意义。
目的:系统梳理基于机器学习技术的运动损伤预警模型相关研究,为中国运动损伤预警模型构建工作提供借鉴。
方法:对中国知网、Web of Science和EBSCO数据库进行文献检索,主要检索机器学习技术和运动损伤相关文献,最终纳入61篇运动损伤预警模型相关文献进行分析。
结果与结论:①在纳入文献的外部风险特征指标中,缺乏比赛场景类指标,后续需进一步完善相关特征指标的纳入工作,以进一步丰富模型训练的数据集维度;此外,运动损伤预警模型的纳入特征权重方法以过滤法为主,需强化嵌入法及包裹法等权重方法的运用,以增强多风险因素交互效应的分析。②在模型主体训练方面,模型主体训练算法多以监督式学习算法为主,此类算法对样本标注信息的完整度有较高要求,应用场景易受限,后期可增加无监督式与半监督式算法的应用。③在模型性能评估优化方面,现研究主要采用了HoldOut交叉与k-交叉两种验证方式评估模型性能,模型的AUC值范围(0.76±0.12),灵敏度范围(75.92±11.03)%,特异度范围(80.03±4.54)%,F1分数值范围(80.60±10.63)%,准确度范围(69.96±13.10)%,精确度范围(70±14.71)%,数据增强与特征优化为最常见的模型优化操作。当前运动损伤预警模型准确度及精确度均约为70%,预警效果良好,但模型优化操作较单一,多采用数据增强方法提升模型性能,需强化对模型算法、超参数的调整,以进一步提升模型性能。④在模型特征提取方面,纳入的内部风险特征指标多以人体测量学、训练负荷、训练年限和损伤史等指标为主,缺乏运动恢复类指标与身体机能类指标。
https://orcid.org/0000-0001-8451-185X(魏梦力);https://orcid.org/0000-0002-3010-5001(钟亚平)
中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

关键词: 运动损伤, 损伤预警, 损伤预防, 智能预警, 机器学习, 深度学习, 人工智能, 体育运动

Abstract: BACKGROUND: The sports medicine community has widely called for the use of machine learning technology to efficiently process the huge and complicated sports data resources, and construct intelligent sports injury prediction models, enabling accurate early warning of sports injuries. It is of great significance to comprehensively summarize and review such research results so as to grasp the direction of early warning model improvement and to guide the construction of sports injury prediction models in China.
OBJECTIVE: To systematically review and analyze relevant research on sports injury prediction models based on machine learning technology, thereby providing references for the development of sports injury prediction models in China.
METHODS: Literature search was conducted on CNKI, Web of Science and EBSCO databases, which mainly searched for literature related to machine learning techniques and sports injuries. Finally, 61 articles related to sports injury prediction models were included for analysis.
RESULTS AND CONCLUSION: (1) In terms of external risk feature indicators, there is a lack of competition scenario indicators, and the inclusion of related feature indicators needs to be further improved to further enrich the dimensions of the dataset for model training. In addition, the inclusion feature weighting methods of the sports injury prediction model are mainly based on filtering methods and the use of embedding and wrapping weighting methods needs to be strengthened in order to enhance the analysis of the interaction effects of multiple risk factors. (2) In terms of model body training, supervised learning algorithms become the mainstream choice. Such algorithms have higher requirements for the completeness of sample labeling information, and the application scenarios are easily limited. Therefore, the application of unsupervised and semi-supervised algorithms can be increased in the later stage. (3) In terms of model performance evaluation and optimization, the current studies mainly adopt two verification methods: HoldOut crossover and k-crossover. The range of AUC values is (0.76±0.12), the range of sensitivity is (75.92±11.03)%, the range of specificity is (0.03±4.54)%, the range of F1 score is (80.60±10.63)%, the range of accuracy is (69.96±13.10)%, and the range of precision is (70±14.71)%. Data augmentation and feature optimization are the most common model optimization operations. The accuracy and precision of the current sports injury prediction model are about 70%, and the early warning effect is good. However, the model optimization operation is relatively single, and data augmentation methods are often used to improve model performance. Further adjustments to the model algorithm and hyperparameters are needed to further improve model performance. (4) In terms of model feature extraction, most of the internal risk profile indicators included are mainly based on anthropometrics, training load, years of training, and injury history, but there is a lack of sports recovery and physical function indicators. 

Key words: sports injury, injury warning, injury prevention, intelligent warning, machine learning, deep learning, artificial intelligence, sports 

中图分类号: