[1] CHINTA SR, CASSIDY MF, TRAN DL, et al. Epidemiology of distal radius fractures: Elucidating mechanisms, comorbidities, and fracture classification using the national trauma data bank. Injury. 2024;55(2): 111217.
[2] FLINKKILA T, SIRNIO K, HIPPI M, et al. Epidemiology and seasonal variation of distal radius fractures in Oulu, Finland. Osteoporos Int. 2011;22(8):2307-2312.
[3] NELLANS KW, KOWALSKI E, CHUNG KC. The epidemiology of distal radius fractures. Hand Clin. 2012;28(2):113-125.
[4] 李庭, 孙志坚, 姚东晨, 等. 成人桡骨远端骨折诊断与治疗循证指南(2024)[J]. 骨科临床与研究杂志, 2024,9(5):257-274.
[5] CHHABRA AB, YILDIRIM B. Adult Distal Radius Fracture Management. J Am Acad Orthop Surg. 2021;29(22):e1105-e1116.
[6] 中华医学会骨科学分会创伤骨科学组, 中华医学会骨科学分会外固定与肢体重建学组. 中国成人桡骨远端骨折诊疗指南(2023)[J]. 中华创伤骨科杂志,2023,25(1):6-13.
[7] ALLURI RK, HILL JR, GHIASSI A. Distal Radius Fractures: Approaches, Indications, and Techniques. J Hand Surg Am. 2016;41(8):845-854.
[8] MANN FA, WILSON AJ, GILULA LA. Radiographic evaluation of the wrist: what does the hand surgeon want to know? Radiology. 1992;184(1): 15-24.
[9] KALMET P, SANDULEANU S, PRIMAKOV S, et al. Deep learning in fracture detection: a narrative review. Acta Orthop. 2020;91(2): 215-220.
[10] GUERMAZI A, TANNOURY C, KOMPEL AJ, et al. Improving Radiographic Fracture Recognition Performance and Efficiency Using Artificial Intelligence. Radiology. 2022;302(3):627-636.
[11] KUO R, HARRISON C, CURRAN TA, et al. Artificial Intelligence in Fracture Detection: A Systematic Review and Meta-Analysis. Radiology. 2022;304(1):50-62.
[12] ZHAO H, LIU Z, TANG J, et al. Energy-efficient high-fidelity image reconstruction with memristor arrays for medical diagnosis. Nat Commun. 2023;14(1):2276.
[13] 屈锐, 李开南. 深度学习技术在骨折诊断中应用的研究进展[J]. 中华创伤杂志,2023,39(4):378-384.
[14] 宋浩然, 张玉强, 谷娜, 等. 基于Citespace对人工智能在骨创伤研究的可视化分析[J]. 中国组织工程研究,2025,29(3):493-502.
[15] YANG L, GAO S, LI P, et al. Recognition and Segmentation of Individual Bone Fragments with a Deep Learning Approach in CT Scans of Complex Intertrochanteric Fractures: A Retrospective Study. J Digit Imaging. 2022;35(6):1681-1689.
[16] LIU P, HAN H, DU Y, et al. Deep learning to segment pelvic bones: large-scale CT datasets and baseline models. Int J Comput Assist Radiol Surg. 2021;16(5):749-756.
[17] ZHOU Q, QIN P, LUO J, et al. Evaluating AI rib fracture detections using follow-up CT scans. Am J Emerg Med. 2023;72:34-38.
[18] 胥少汀,葛宝丰,徐印坎. 实用骨科学[M]. 北京: 人民军医出版社, 2012.
[19] MEINBERG EG, AGEL J, ROBERTS CS, et al. Fracture and Dislocation Classification Compendium-2018. J Orthop Trauma. 2018;32 Suppl 1: S1-S170.
[20] KOTTNER J, AUDIGE L, BRORSON S, et al. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. J Clin Epidemiol. 2011;64(1):96-106.
[21] ZHANG J, YAO X, SONG Y, et al. Establishment and preliminary evaluation of CT-based classification for distal radius fracture. Sci Rep. 2024;14(1):9673.
[22] 宋彬略, 周童飞, 梁辉, 等. 螺旋CT三维重建技术用于AO-C型桡骨远端骨折的诊断价值[J]. 中国基层医药,2021,28(2):258-262.
[23] SEIGERMAN D, LUTSKY K, FLETCHER D, et al. Complications in the Management of Distal Radius Fractures: How Do We Avoid them? Curr Rev Musculoskelet Med. 2019;12(2):204-212.
[24] COGNET JM, MARES O. Distal radius malunion in adults. Orthop Traumatol Surg Res. 2021;107(1S):102755.
[25] 杨燕青, 郑宏, 王慧燕, 等. 医护人员压力源与应对策略现状分析[J]. 中华全科医学,2018,16(6):983-988.
[26] TEOH K, SINGH J, MEDISAUSKAITE A, et al. Doctors’ perceived working conditions, psychological health and patient care: a meta-analysis of longitudinal studies. Occup Environ Med. 2023;80(2):61-69.
[27] MYERS TG, RAMKUMAR PN, RICCIARDI BF, et al. Artificial Intelligence and Orthopaedics: An Introduction for Clinicians. J Bone Joint Surg Am. 2020;102(9):830-840.
[28] PRIJS J, LIAO Z, ASHKANI-ESFAHANI S, et al. Artificial intelligence and computer vision in orthopaedic trauma: the why, what, and how. Bone Joint J. 2022;104-B(8):911-914.
[29] 田楚伟, 陈翔溆, 朱桓毅, 等. 机器学习在创伤骨科中的应用与展望[J]. 中国修复重建外科杂志,2023,37(12):1562-1568.
[30] LANGERHUIZEN D, JANSSEN SJ, MALLEE WH, et al. What Are the Applications and Limitations of Artificial Intelligence for Fracture Detection and Classification in Orthopaedic Trauma Imaging? A Systematic Review. Clin Orthop Relat Res. 2019;477(11):2482-2491.
[31] XIN C, LI B, WANG D, et al. Deep learning for the rapid automatic segmentation of forearm muscle boundaries from ultrasound datasets. Front Physiol. 2023;14:1166061.
[32] 王一寒, 李杨, 张玲, 等. 数字骨科三维可视化技术在股骨转子间骨折复位内固定中的应用[J]. 中国组织工程研究,2021,25(24): 3816-3820.
[33] DANKELMAN L, SCHILSTRA S, IJPMA F, et al. Artificial intelligence fracture recognition on computed tomography: review of literature and recommendations. Eur J Trauma Emerg Surg. 2023;49(2):681-691.
[34] LUQUE-LUQUE A, PEREZ-CANO FD, JIMENEZ-DELGADO JJ. Complex fracture reduction by exact identification of the fracture zone. Med Image Anal. 2021;72:102120.
[35] ZENG B, WANG H, TAO X, et al. A bidirectional framework for fracture simulation and deformation-based restoration prediction in pelvic fracture surgical planning. Med Image Anal. 2024;97:103267.
[36] JEON YD, JUNG KH, KIM MS, et al. Clinical validation of artificial intelligence-based preoperative virtual reduction for Neer 3- or 4-part proximal humerus fractures. BMC Musculoskelet Disord. 2024;25(1): 669.
[37] ALOWAIS SA, ALGHAMDI SS, ALSUHEBANY N, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 2023;23(1):689.
[38] 张鑫, 陈夫涛, 陆加明, 等. 人工智能在医学影像科全流程管理应用场景中的研究进展[J]. 中华放射学杂志,2023,57(10):1042-1046.
[39] STASSEN P, WESTERMAN D. Novice Doctors in the Emergency Department: A Scoping Review. Cureus. 2022;14(6):e26245.
[40] ANDERSON PG, BAUM GL, KEATHLEY N, et al. Deep Learning Assistance Closes the Accuracy Gap in Fracture Detection Across Clinician Types. Clin Orthop Relat Res. 2023;481(3):580-588. |